Abstract

Electrical submersible pumps (ESPs) widely used in oil-gas artificial lift consume a lot of electric energy in long-term operation. This paper mainly focuses on the gas–liquid performance and predicting shaft power and efficiency of a 25-stage ESP. First, the calculation methods of two-phase hydraulic parameters and corresponding dimensionless hydraulic coefficients based on isothermal compression are proposed. Ignoring the gas compressibility will result in large errors in calculating two-phase hydraulic parameters. Then, the effects of liquid flowrate, inlet gas volume fraction, and rotational speed on head, shaft power, and efficiency are analyzed. The severe two-phase head degradation disappears in downstream stages of the ESP because of the decreasing interstage gas volume fraction. Similar to the head, the shaft power and efficiency decrease slowly at first, then rapidly, and finally slowly with the increase of inlet gas volume fraction. Finally, correlations are proposed for predicting the shaft power and efficiency by the dimensionless head and flow coefficients. There is a power function relation between two-phase head coefficient and efficiency. Thus, through the pump head which can be easily acquired by differential pressure signals in pipeline, prediction correlations for shaft power and efficiency are established with the relative errors lower than 10%. The prediction method based on two-phase dimensionless coefficients can also be referenced to ESPs with different types.

References

1.
Zhu
,
J.
, and
Zhang
,
H.-Q.
,
2018
, “
A Review of Experiments and Modeling of Gas-Liquid Flow in Electrical Submersible Pumps
,”
Energies
,
11
(
1
), p.
180
.10.3390/en11010180
2.
Takacs
,
G.
,
2017
,
Electrical Submersible Pumps Manual: Design, Operations, and Maintenance
,
Gulf Professional Publishing
, Cambridge,
MA
.
3.
Firatoglu
,
Z. A.
, and
Alihanoglu
,
M. N.
,
2022
, “
Investigation of the Effect of the Stages Number, the Impeller Outlet Width, and the Impeller Outlet Angle on the Performance of an Industrial Electric Submersible Pump
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081203
.10.1115/1.4053652
4.
Murakami
,
M.
, and
Minemura
,
K.
,
1974
, “
Effects of Entrained Air on the Performance of a Centrifugal Pump: 1st Report, Performance and Flow Conditions
,”
Bull. JSME
,
17
(
110
), pp.
1047
1055
.10.1299/jsme1958.17.1047
5.
Murakami
,
M.
, and
Minemura
,
K.
,
1974
, “
Effects of Entrained Air on the Performance of Centrifugal Pumps: 2nd Report, Effects of Number of Blades
,”
Bull. JSME
,
17
(
112
), pp.
1286
1295
.10.1299/jsme1958.17.1286
6.
Chang
,
L.
,
Xu
,
Q.
,
Yang
,
C.
,
Su
,
X.
,
Zhang
,
X.
, and
Guo
,
L.
,
2022
, “
Experimental Study of Gas–Liquid Pressurization Performance and Critical Gas Volume Fractions of a Multiphase Pump
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051404
.10.1115/1.4052770
7.
Neumann
,
M.
,
Schäfer
,
T.
,
Bieberle
,
A.
, and
Hampel
,
U.
,
2016
, “
An Experimental Study on the Gas Entrainment in Horizontally and Vertically Installed Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091301
.10.1115/1.4033029
8.
Schäfer
,
T.
,
Neumann-Kipping
,
M.
,
Bieberle
,
A.
,
Bieberle
,
M.
, and
Hampel
,
U.
,
2020
, “
Ultrafast X-Ray Computed Tomography Imaging for Hydrodynamic Investigations of Gas–Liquid Two-Phase Flow in Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
041502
.10.1115/1.4045497
9.
Barrios
,
L.
, and
Prado
,
M. G.
,
2011
, “
Experimental Visualization of Two-Phase Flow Inside an Electrical Submersible Pump Stage
,”
ASME J. Energy Resour. Technol.
,
133
(
4
), p.
042901
.10.1115/1.4004966
10.
Perissinotto
,
R. M.
,
Monte Verde
,
W.
,
Biazussi
,
J. L.
,
Bulgarelli
,
N. A. V.
,
Fonseca
,
W. D. P.
,
Castro
,
M.
,
Franklin
,
E.
,
Bannwart
, and
A.
,
C.
,
2021
, “
Flow Visualization in Centrifugal Pumps: A Review of Methods and Experimental Studies
,”
J. Pet. Sci. Eng.
,
203
, p.
108582
.10.1016/j.petrol.2021.108582
11.
Stel
,
H.
,
Ofuchi
,
E. M.
,
Alves
,
R. F.
,
Chiva
,
S.
, and
Morales
,
R. E.
,
2020
, “
Experimental Analysis of Gas–Liquid Flows in a Centrifugal Rotor
,”
ASME J. Fluids Eng.
,
142
(
3
), p.
031101
.10.1115/1.4045857
12.
Monte Verde
,
W.
,
Biazussi
,
J. L.
,
Sassim
,
N. A.
, and
Bannwart
,
A. C.
,
2017
, “
Experimental Study of Gas-Liquid Two-Phase Flow Patterns Within Centrifugal Pumps Impellers
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
37
51
.10.1016/j.expthermflusci.2017.02.019
13.
Cubas
,
J. M.
,
Stel
,
H.
,
Ofuchi
,
E. M.
,
Neto
,
M. A. M.
, and
Morales
,
R. E.
,
2020
, “
Visualization of Two-Phase Gas-Liquid Flow in a Radial Centrifugal Pump With a Vaned Diffuser
,”
J. Pet. Sci. Eng
,.,
187
, p.
106848
.10.1016/j.petrol.2019.106848
14.
Salehi
,
E.
,
Gamboa
,
J.
, and
Prado
,
M.
,
2013
, “
Experimental Studies on the Effect of the Number of Stages on the Performance of an Electrical Submersible Pump in Two-Phase flow Conditions
,”
Fluid Struct. Interact. VII
,
129
, p.
227
.10.2495/FSI130201
15.
Zhu
,
J.
,
Zhu
,
H.
,
Wang
,
Z.
,
Zhang
,
J.
,
Cuamatzi-Melendez
,
R.
,
Farfan
,
J. A. M.
, and
Zhang
,
H.-Q.
,
2018
, “
Surfactant Effect on Air/Water Flow in a Multistage Electrical Submersible Pump (ESP)
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
95
111
.10.1016/j.expthermflusci.2018.05.013
16.
Mansour
,
M.
,
Kopparthy
,
S.
, and
Thévenin
,
D.
,
2022
, “
Investigations on the Effect of Rotational Speed on the Transport of Air-Water Two-Phase Flows by Centrifugal Pumps
,”
Int. J. Heat Fluid Flow
,
94
, p.
108939
.10.1016/j.ijheatfluidflow.2022.108939
17.
Bulgarelli
,
N. A. V.
,
Biazussi
,
J. L.
,
Monte Verde
,
W.
,
Castro
,
M.
, and
Bannwart
,
A. C.
,
2020
, “
Experimental Study of Phase Inversion Phenomena in Electrical Submersible Pumps Under Oil/Water Flow
,”
ASME J. Offshore. Mech. Arct. Eng.
,
142
(
4
), p.
041402
.10.1115/1.4045787
18.
Bulgarelli
,
N. A. V.
,
Biazussi
,
J. L.
,
Verde
,
W. M.
,
Perles
,
C. E.
,
de Castro
,
M. S.
, and
Bannwart
,
A. C.
,
2021
, “
Experimental Investigation on the Performance of Electrical Submersible Pump (ESP) Operating With Unstable Water/Oil Emulsions
,”
J. Pet. Sci. Eng.
,
197
, p.
107900
.10.1016/j.petrol.2020.107900
19.
Perissinotto
,
R. M.
,
Monte Verde
,
W.
,
Perles
,
C. E.
,
Biazussi
,
J. L.
,
de Castro
,
M. S.
, and
Bannwart
,
A. C.
,
2020
, “
Experimental Analysis on the Behavior of Water Drops Dispersed in Oil Within a Centrifugal Pump Impeller
,”
Exp. Therm. Fluid Sci.
,
112
, p.
109969
.10.1016/j.expthermflusci.2019.109969
20.
Perissinotto
,
R. M.
,
Verde
,
W. M.
,
de Castro
,
M. S.
,
Biazussi
,
J. L.
,
Estevam
,
V.
, and
Bannwart
,
A. C.
,
2019
, “
Experimental Investigation of Oil Drops Behavior in Dispersed Oil-Water Two-Phase Flow Within a Centrifugal Pump Impeller
,”
Exp. Therm. Fluid Sci
,.,
105
, pp.
11
26
.10.1016/j.expthermflusci.2019.03.009
21.
Agarwal
,
R.
,
Patil
,
A.
, and
Morrison
,
G.
,
2020
, “
Efficiency Prediction of Centrifugal Pump Using the Modified Affinity Laws
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032102
.10.1115/1.4044940
22.
Patil
,
A.
, and
Morrison
,
G.
,
2019
, “
Affinity Law Modified to Predict the Pump Head Performance for Different Viscosities Using the Morrison Number
,”
ASME J. Fluids Eng.
,
141
(
2
), p.
021203
.10.1115/1.4041066
23.
Caridad
,
J.
,
Asuaje
,
M.
,
Kenyery
,
F.
,
Tremante
,
A.
, and
Aguillón
,
O.
,
2008
, “
Characterization of a Centrifugal Pump Impeller Under Two-Phase Flow Conditions
,”
J. Pet. Sci. Eng.
,
63
(
1–4
), pp.
18
22
.10.1016/j.petrol.2008.06.005
24.
Lea
,
J. F.
, and
Bearden
,
J.
,
1982
, “
Effect of Gaseous Fluids on Submersible Pump Performance
,”
J. Pet. Technol.
,
34
(
12
), pp.
2922
2930
.10.2118/9218-PA
25.
Zhao
,
L.
,
Chang
,
Z.
,
Zhang
,
Z.
,
Huang
,
R.
, and
He
,
D.
,
2021
, “
Visualization of Gas-Liquid Flow Pattern in a Centrifugal Pump Impeller and Its Influence on the Pump Performance
,”
Meas. Sens.
,
13
, p.
100033
.10.1016/j.measen.2020.100033
26.
Mansour
,
M.
,
Wunderlich
,
B.
, and
Thévenin
,
D.
,
2018
, “
Effect of Tip Clearance Gap and Inducer on the Transport of Two-Phase Air-Water Flows by Centrifugal Pumps
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
487
509
.10.1016/j.expthermflusci.2018.08.018
27.
Liu
,
M.
,
Tan
,
L.
, and
Cao
,
S.
,
2019
, “
Theoretical Model of Energy Performance Prediction and BEP Determination for Centrifugal Pump as Turbine
,”
Energy
,
172
, pp.
712
732
.10.1016/j.energy.2019.01.162
28.
Sun
,
D.
, and
Prado
,
M.
,
2005
, “
Modeling Gas-Liquid Head Performance of Electrical Submersible Pumps
,”
ASME J. Pressure Vessel Technol.
,
127
(
1
), pp.
31
38
.10.1115/1.1845473
29.
Ali
,
A.
,
Yuan
,
J.
,
Deng
,
F.
,
Wang
,
B.
,
Liu
,
L.
,
Si
,
Q.
, and
Buttar
,
N. A.
,
2021
, “
Research Progress and Prospects of Multi-Stage Centrifugal Pump Capability for Handling Gas–Liquid Multiphase Flow: Comparison and Empirical Model Validation
,”
Energies
,
14
(
4
), p.
896
.10.3390/en14040896
30.
Zhu
,
H.
,
Zhu
,
J.
, and
Zhang
,
H.-Q.
,
2022
, “
Mechanistic Modeling of Gas Effect on Multi-Stage Electrical Submersible Pump (ESP) Performance With Experimental Validation
,”
Chem. Eng. Sci.
,
252
(
28
), p.
117288
.10.1016/j.ces.2021.117288
31.
Monte Verde
,
W.
,
Biazussi
,
J.
,
Porcel
,
C. E.
,
Estevam
,
V.
,
Tavares
,
A.
,
Neto
,
S. J. A.
,
Rocha
,
P. S. D M.
, and
Bannwart
,
A. C.
,
2021
, “
Experimental Investigation of Pressure Drop in Failed Electrical Submersible Pump (ESP) Under Liquid Single-Phase and Gas-Liquid Two-Phase Flow
,”
J. Pet. Sci. Eng.
,
198
, p.
108127
.10.1016/j.petrol.2020.108127
32.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
33.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M. B.
,
2010
,
Fundamentals of Engineering Thermodynamics
,
7th edn., Wiley, Hoboken, NJ
.
34.
Zhang
,
J.
,
Teixeira
,
A. R.
,
Zhang
,
H.
, and
Jensen
,
K. F.
,
2017
, “
Automated In Situ Measurement of Gas Solubility in Liquids With a Simple Tube-in-Tube Reactor
,”
Anal. Chem.
,
89
(
16
), pp.
8524
8530
.10.1021/acs.analchem.7b02264
35.
He
,
D.
,
Ge
,
Z.
,
Bai
,
B.
,
Guo
,
P.
, and
Luo
,
X.
,
2020
, “
Gas–Liquid Two-Phase Performance of Centrifugal Pump Under Bubble Inflow Based on Computational Fluid Dynamics–Population Balance Model Coupling Model
,”
ASME J. Fluids Eng.
,
142
(
8
), p.
081402
.10.1115/1.4047064
36.
Stel
,
H.
,
Ofuchi
,
E. M.
,
Chiva
,
S.
, and
Morales
,
R. E. M.
,
2020
, “
Numerical Simulation of Gas-Liquid Flows in a Centrifugal Rotor
,”
Chem. Eng. Sci.
,
221
, p.
115692
.10.1016/j.ces.2020.115692
37.
Shao
,
C.
,
Li
,
C.
, and
Zhou
,
J.
,
2018
, “
Experimental Investigation of Flow Patterns and External Performance of a Centrifugal Pump That Transports Gas-Liquid Two-Phase Mixtures
,”
Int. J. Heat Fluid Flow
,
71
, pp.
460
469
.10.1016/j.ijheatfluidflow.2018.05.011
38.
Zhu
,
J.
,
Guo
,
X.
,
Liang
,
F.
, and
Zhang
,
H.-Q.
,
2017
, “
Experimental Study and Mechanistic Modeling of Pressure Surging in Electrical Submersible Pump
,”
J. Nat. Gas Sci. Eng.
,
45
, pp.
625
636
.10.1016/j.jngse.2017.06.027
39.
Sun
,
D.
, and
Prado
,
M. G.
,
2006
, “
Single-Phase Model for Electric Submersible Pump (ESP) Head Performance
,”
SPE J.
,
11
(
01
), pp.
80
88
.10.2118/80925-PA
40.
Gamboa
,
J.
, and
Prado
,
M.
,
2012
, “
Experimental Study of Two-Phase Performance of an Electric-Submersible-Pump Stage
,”
SPE Prod. Oper.
,
27
(
04
), pp.
414
421
.10.2118/163048-PA
41.
He
,
D.
,
Zhao
,
L.
,
Chang
,
Z.
,
Zhang
,
Z.
,
Guo
,
P.
, and
Bai
,
B.
,
2021
, “
On the Performance of a Centrifugal Pump Under Bubble Inflow: Effect of Gas-Liquid Distribution in the Impeller
,”
J. Pet. Sci. Eng.
,
203
, p.
108587
.10.1016/j.petrol.2021.108587
You do not currently have access to this content.