Abstract

Hydrokinetic flapping foil turbines in swing-arm mode have gained considerable interest in recent years because of their enhanced capability to extract power, and improved efficiency compared to foils in simple mode. The performance of foil turbines is closely linked to the development and separation of the leading-edge vortex (LEV). The paper's aim is to develop a purpose-built 2D numerical model to present the capability of integrating the weighted residual finite element method (FEM) with the interface capturing technique, level-set method (LSM), in providing a high-quality numerical simulation of the flapping foil in swing-arm mode, by accurately modeling the formation and the separation of the LEV on flapping foils. The solvers were validated against well-known static and dynamic benchmark problems and the effect of the mesh density was analyzed and discussed. This paper further covers an initial investigation of the hydrodynamics of flapping foil in swing-arm mode, by studying the structure of the vortex around a NACA0012 foil. The presented method helps to provide a better understanding of the relation between the Leading-Edge Vortex creation, growth, and separation over the flapping foil in swing-arm mode and the extracted power from a hydrokinetic turbine.

References

1.
Armaroli
,
N.
, and
Balzani
,
V.
,
2011
, “
Towards an Electricity-Powered World
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3193
3222
.10.1039/c1ee01249e
2.
Freris
,
L.
, and
Infield
,
D.
,
2008
,
Renewable Energy in Power Systems
,
Wiley
, The Atrium, UK.
3.
Limited
,
T. E. B.
,
2002
, Stingray tidal stream energy device: phase 1. Report No. ETSU-T/06/00211/00/REP, URN No 02/1400.
4.
Limited
,
T. E. B.
,
2003
, Stingray tidal stream energy device: phase 2. Report No. ETSU-T/06/00218/00/REP, URN No 03/1433.
5.
Limited
,
T. E. B.
,
2005
, Stingray tidal stream energy device - phase 3. Tech. Rep. ETSU-T/06/00230/00/REP, URN No 05/864.
6.
Cardona
,
J. L.
,
Miller
,
M. J.
,
Derecktor
,
T.
,
Winckler
,
S.
,
Volkmann
,
K.
,
Medina
,
A.
,
Cowles
,
S.
,
Lorick
,
R.
,
Breuer
,
K. S.
, and
Mandre
,
S.
,
2016
, “
Field Testing of a 1 kw Oscillating Hydrofoil Energy Harvesting System
,”
Marine Energy Technology Symposium
, Washington, DC, Apr. 25–27.
7.
Kinsey
,
T.
,
Dumas
,
G.
,
Lalande
,
G.
,
Ruel
,
J.
,
Mehut
,
A.
,
Viarouge
,
P.
,
Lemay
,
J.
, and
Jean
,
Y.
,
2011
, “
Prototype Testing of a Hydrokinetic Turbine Based on Oscillating Hydrofoils
,”
Renewable Energy
,
36
(
6
), pp.
1710
1718
.10.1016/j.renene.2010.11.037
8.
Fernandes
,
A. C.
, and
Armandei
,
M
, et al
2013
, “
Marine Current Energy Extraction Using Torsional Galloping Based Turbine
,” In Offshore Technology Conference, Offshore Technology Conference, Houston, TX, May 6–9, OTC Paper No.
OTC-24035-MS
.10.4043/24035-MS
9.
Wu
,
T
, et al.,
1972
, “
Extraction of Flow Energy by a Wing Oscillating in Waves
,”
J. Ship Res.
,
16
(
1
), pp.
66
78
.10.5957/jsr.1972.16.1.66
10.
Young
,
J.
,
Lai
,
J. C.
, and
Platzer
,
M. F.
,
2014
, “
A Review of Progress and Challenges in Flapping Foil Power Generation
,”
Prog. Aerosp. Sci.
,
67
, pp.
2
28
.10.1016/j.paerosci.2013.11.001
11.
Joshi
,
K.
, and
Bhattacharya
,
S.
,
2022
, “
The Unsteady Force Response of an Accelerating Flat Plate With Controlled Spanwise Bending
,”
J. Fluid Mech.
,
933
, p.
A56
.10.1017/jfm.2021.1110
12.
Jia
,
K.
,
Scofield
,
T.
,
Wei
,
M.
, and
Bhattacharya
,
S.
,
2021
, “
Vorticity Transfer in a Leading-Edge Vortex Due to Controlled Spanwise Bending
,”
Phys. Rev. Fluids
,
6
(
2
), p.
024703
.10.1103/PhysRevFluids.6.024703
13.
Wu
,
J.
,
Zhan
,
J.
,
Wang
,
X.
, and
Zhao
,
N.
,
2015
, “
Power Extraction Efficiency Improvement of a Fully-Activated Flapping Foil: With the Help of an Auxiliary Rotating Foil
,”
J. Fluids Struct.
,
57
, pp.
219
228
.10.1016/j.jfluidstructs.2015.06.013
14.
Karbasian
,
H.
,
Esfahani
,
J. A.
, and
Barati
,
E.
,
2016
, “
The Power Extraction by Flapping Foil Hydrokinetic Turbine in Swing Arm Mode
,”
Renewable Energy
,
88
, pp.
130
142
.10.1016/j.renene.2015.11.038
15.
Zhang
,
Y.
,
Wang
,
Y.
,
Han
,
J.
,
Sun
,
G.
, and
Xie
,
Y.
,
2022
, “
Effects of Hydrofoil Motion Parameters and Swing Arm Parameters on Power Extraction of a Flexible Hydrofoil in Swing Arm Mode
,”
Ocean Eng.
,
245
, p.
110543
.10.1016/j.oceaneng.2022.110543
16.
Boudreau
,
M.
,
Dumas
,
G.
,
Rahimpour
,
M.
, and
Oshkai
,
P.
,
2018
, “
Experimental Investigation of the Energy Extraction by a Fully-Passive Flapping-Foil Hydrokinetic Turbine Prototype
,”
J. Fluids Struct.
,
82
, pp.
446
472
.10.1016/j.jfluidstructs.2018.07.014
17.
Duarte
,
L.
,
Dellinger
,
N.
,
Dellinger
,
G.
,
Ghenaim
,
A.
, and
Terfous
,
A.
,
2019
, “
Experimental Investigation of the Dynamic Behaviour of a Fully Passive Flapping Foil Hydrokinetic Turbine
,”
J. Fluids Struct.
,
88
, pp.
1
12
.10.1016/j.jfluidstructs.2019.04.012
18.
Liseikin
,
V. D.
,
1999
,
Grid Generation Methods
, Vol.
1
,
Springer
, New York.10.1007/978-3-662-03949-6
19.
Carey
,
G. F.
,
1997
,
Computational Grids: Generations, Adaptation & Solution Strategies
,
Taylor & Francis
, Washington, DC.
20.
Souli
,
M.
, and
Benson
,
D. J.
,
2013
,
Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction: Numerical Simulation
,
Wiley
, Hoboken, NJ.10.1002/9781118557884
21.
Hirt
,
C. W.
,
Amsden
,
A. A.
, and
Cook
,
J.
,
1974
, “
An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
,
14
(
3
), pp.
227
253
.10.1016/0021-9991(74)90051-5
22.
Hamada
,
A. A.
, and
Fürth
,
M.
,
2021
, “
Ground Effect on Current Energy Harvesting From a Freely-Oscillating Circular Cylinder at Low Reynolds Number
,” AMSE Paper No. OMAE2021-63454.
23.
Jardin
,
T.
,
Farcy
,
A.
, and
David
,
L.
,
2012
, “
Three-Dimensional Effects in Hovering Flapping Flight
,”
J. Fluid Mech.
,
702
, pp.
102
125
.10.1017/jfm.2012.163
24.
Jasak
,
H.
, and
Tuković
,
Ž.
,
2010
, “
Dynamic Mesh Handling in Openfoam Applied to Fluid-Structure Interaction Simulations
,”
Proceedings of the V European Conference on Computational Fluid Dynamics ECCOMAS CFD
, Lisbon, Portugal, June 14–17, pp. 1–20.https://www.researchgate.net/publication/314088145_Dynamic_Mesh_Handling_in_OpenFOAM_Applied_to_Fluid-Structure_Interaction_Simulations
25.
Page
,
M.
,
Beaudoin
,
M.
, and
Giroux
,
A.-M.
,
2011
, “
Steady-State Capabilities for Hydroturbines With Openfoam
,”
Int. J. Fluid Mach. Syst.
,
4
(
1
), pp.
161
171
.10.5293/IJFMS.2011.4.1.161
26.
Sangolola
,
B.
, and
Lakey
,
S.
,
2006
, “
Commercial Cfd Software Application to Unsteady Aerodynamics of Oscillating Aerofoils
,”
AIAA
Paper No. 2006-3851
.10.2514/6.2006-3851
27.
Li
,
L.
,
Sherwin
,
S.
, and
Bearman
,
P. W.
,
2002
, “
A Moving Frame of Reference Algorithm for Fluid/Structure Interaction of Rotating and Translating Bodies
,”
Int. J. Numer. Methods Fluids
,
38
(
2
), pp.
187
206
.10.1002/fld.216
28.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Optimal Tandem Configuration for Oscillating-Foils Hydrokinetic Turbine
,”
ASME J. Fluids Eng.
,
134
(
3
), p.
031103
.10.1115/1.4005423
29.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Three-Dimensional Effects on an Oscillating-Foil Hydrokinetic Turbine
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071105
.10.1115/1.4006914
30.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Computational Fluid Dynamics Analysis of a Hydrokinetic Turbine Based on Oscillating Hydrofoils
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021104
.10.1115/1.4005841
31.
Zouzou
,
B.
,
Dobrev
,
I.
,
Massouh
,
F.
, and
Dizene
,
R.
,
2019
, “
Experimental and Numerical Analysis of a Novel Darrieus Rotor With Variable Pitch Mechanism at Low TSR
,”
Energy
,
186
, p.
115832
.10.1016/j.energy.2019.07.162
32.
Sukas
,
O. F.
,
Kinaci
,
O. K.
,
Cakici
,
F.
, and
Gokce
,
M. K.
,
2017
, “
Hydrodynamic Assessment of Planing Hulls Using Overset Grids
,”
Appl. Ocean Res.
,
65
, pp.
35
46
.10.1016/j.apor.2017.03.015
33.
Siemens Digital Industries Software
,
2021
, “
Simcenter STAR-CCM+ User Guide, Version 2021.1
,”
Adaptive Mesh Refinement for Overset Meshes
,
Siemens
, TX, pp.
3067
3070
.
34.
Chandar
,
D. D.
,
Boppana
,
B.
, and
Kumar
,
V.
,
2018
, “
A Comparative Study of Different Overset Grid Solvers Between Openfoam, Starccm+ and Ansys-Fluent
,”
AIAA
Paper No. 2018-1564
.10.2514/6.2018-1564
35.
Windt
,
C.
,
Davidson
,
J.
,
Chandar
,
D. D.
,
Faedo
,
N.
, and
Ringwood
,
J. V.
,
2020
, “
Evaluation of the Overset Grid Method for Control Studies of Wave Energy Converters in Openfoam Numerical Wave Tanks
,”
J. Ocean Eng. Mar. Energy
,
6
(
1
), pp.
55
70
.10.1007/s40722-019-00156-5
36.
Chen
,
H.
,
Qian
,
L.
,
Ma
,
Z.
,
Bai
,
W.
,
Li
,
Y.
,
Causon
,
D.
, and
Mingham
,
C.
,
2019
, “
Application of an Overset Mesh Based Numerical Wave Tank for Modelling Realistic Free-Surface Hydrodynamic Problems
,”
Ocean Eng.
,
176
, pp.
97
117
.10.1016/j.oceaneng.2019.02.001
37.
Windt
,
C.
,
Davidson
,
J.
,
Akram
,
B.
, and
Ringwood
,
J. V.
,
2018
, “
Performance Assessment of the Overset Grid Method for Numerical Wave Tank Experiments in the Openfoam Environment
,”
ASME
Paper No. OMAE2018-77564. 10.1115/OMAE2018-77564
38.
Clark
,
C. G.
,
Lyons
,
D. G.
, and
Neu
,
W. L.
,
2014
, “
Comparison of Single and Overset Grid Techniques for CFD Simulations of a Surface Effect Ship
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
ASME
Paper No. OMAE2014-24207.10.1115/OMAE2014-24207
39.
Siddiqui
,
M. A.
,
Xu
,
H-L.
,
Greco
,
M.
, and
Colicchio
,
G.
,
2020
, “
Analysis of Open-Source Cfd Tools for Simulating Complex Hydrodynamic Problems
,”
ASME
Paper No. OMAE2020-18030.10.1115/OMAE2020-18030
40.
Kandasamy
,
M.
,
Xing
,
T.
,
Wilson
,
R.
, and
Stern
,
F.
,
2005
, “
Vortical and Turbulent Structures and Instabilities in Unsteady Free-Surface Wave Induced Separation
,”
5th Osaka Colloquium on Advanced Research on Ship Viscous Flow and Hull Form Design by EFD and CFD Approaches
,
Osaka Prefecture University
,
Osaka, Japan
, Mar. 14–15, Paper No. OTC 24035.
41.
Brocchini
,
M.
,
2002
, “
Free Surface Boundary Conditions at a Bubbly/Weakly Splashing Air–Water Interface
,”
Phys. Fluids
,
14
(
6
), pp.
1834
1840
.10.1063/1.1475998
42.
Chung
,
M.-H.
,
2016
, “
Propulsive Performance of a Flapping Plate Near a Free Surface
,”
J. Fluids Struct.
,
65
, pp.
411
432
.10.1016/j.jfluidstructs.2016.07.003
43.
Bergmann
,
M.
, and
Iollo
,
A.
,
2016
, “
Bioinspired Swimming Simulations
,”
J. Comput. Phys.
,
323
, pp.
310
321
.10.1016/j.jcp.2016.07.022
44.
Ali
,
K. M.
,
Madbouli
,
M.
,
Hamouda
,
H. M.
, and
Guaily
,
A.
,
2021
, “
A Stress Mapping Immersed Boundary Method for Viscous Flows
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
87
(
3
), pp.
1
20
.10.37934/arfmts.87.3.120
45.
Khandelwal
,
P.
,
Subburaj
,
R.
, and
Vengadesan
,
S.
,
2020
, “
Shear Layer Interactions With Fluid–Fluid Interface in the Wake of an Elliptical Cylinder
,”
ASME J. Fluids Eng.
,
142
(
8
), p. 081301.10.1115/1.4046770
46.
Lee
,
H.
,
2015
, “
Water Wave Generation With Source Function in the Level Set Finite Element Framework
,”
J. Mech. Sci. Technol.
,
29
, pp.
3699
3706
.10.1007/s12206-015-0815-5
47.
Mohamed
,
A. B.
,
Abdulrahman
,
M.
, and
Guaily
,
A.
,
2022
, “
Simplified Level Set Method Coupled to Stabilised Finite Element Flow Solver for Moving Boundaries
,”
Prog. Comput. Fluid Dyn., Int. J.
,
22
(
1
), pp.
1
14
.10.1504/PCFD.2022.120265
48.
Di Mascio
,
A.
,
Broglia
,
R.
, and
Muscari
,
R.
,
2007
, “
On the Application of the Single-Phase Level Set Method to Naval Hydrodynamic Flows
,”
Comput. Fluids
,
36
(
5
), pp.
868
886
.10.1016/j.compfluid.2006.08.001
49.
Alqaleiby
,
H.
,
Hashem
,
A. A. F.
,
Tosson
,
M.
, and
Guaily
,
A.
,
2022
, “
Solid Rocket Motor Interior Ballistics Fluid-Solid Interaction Simulation Using Level Set Method for 2D Grains
,”
Prog. Comput. Fluid Dyn., Int. J.
,
22
(
3
), pp.
174
186
.10.1504/PCFD.2022.123182
50.
Elbadry
,
Y. T.
,
Guaily
,
A. G.
,
Boraey
,
M. A.
, and
AbdelRahman
,
M. M.
,
2021
, “
Active Morphing Control of Airfoil at Low Reynolds Number Using Level-Set Method
,” 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (
NILES
), Giza, Egypt, Oct. 23–25, pp.
265
268
.10.1109/NILES53778.2021.9600518
51.
Sharma
,
A.
,
2015
, “
Level Set Method for Computational Multi-Fluid Dynamics: A Review on Developments, Applications and Analysis
,”
Sadhana
,
40
(
3
), pp.
627
652
.10.1007/s12046-014-0329-3
52.
Hamada
,
A.
, and
Fürth
,
M.
,
2022
, “
Development of a Finite Element Solver Including a Level-Set Method for Modeling Hydrokinetic Turbines
,”
ASME
Paper No. FEDSM2022-87877. 10.1115/FEDSM2022-87877
53.
Hamada
,
A.
, and Fürth, M.,
2022
, “
Numerical Investigation of the Energy Harvesting Capabilities of Naca Series Flapping Foil Turbines in Swing-Arm Mode
,” accessed Mar. 8, 2023, https://ssrn.com/abstract=4153303
54.
Donea
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
,
Wiley
, The Atrium, UK.10.1002/0470013826
55.
Argyris
,
J.
,
Balmer
,
H.
,
Doltsinis
,
J. S.
,
Dunne
,
P.
,
Haase
,
M.
,
Kleiber
,
M.
,
Malejannakis
,
G.
, et al.,
1979
, “
Finite Element Method–the Natural Approach
,”
Comput. Methods Appl. Mech. Eng.
,
17
, pp.
1
106
.10.1016/0045-7825(79)90083-5
56.
Wang
,
S.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Tao
,
Z.
,
2010
, “
Numerical Investigations on Dynamic Stall of Low Reynolds Number Flow Around Oscillating Airfoils
,”
Comput. Fluids
,
39
(
9
), pp.
1529
1541
.10.1016/j.compfluid.2010.05.004
57.
Kwak
,
D.
,
Kiris
,
C.
, and
Kim
,
C. S.
,
2005
, “
Computational Challenges of Viscous Incompressible Flows
,”
Comput. Fluids
,
34
(
3
), pp.
283
299
.10.1016/j.compfluid.2004.05.008
58.
Elhanafy
,
A.
,
Guaily
,
A.
, and
Elsaid
,
A.
,
2017
, “
Pressure Stabilized Finite Elements Simulation for Steady and Unsteady Newtonian Fluids
,”
J. Appl. Math. Comput. Mech.
,
16
(
3
), pp.
17
26
.10.17512/jamcm.2017.3.02
59.
Peeters
,
M.
,
Habashi
,
W.
, and
Nguyen
,
B.
,
1991
, “
Finite Element Solution of the Incompressible Navier-Stokes Equations by a Helmholtz Velocity Decomposition
,”
Int. J. Numer. Methods Fluids
,
13
(
2
), pp.
135
144
.10.1002/fld.1650130202
60.
Simpson
,
B. J.
,
Hover
,
F. S.
,
Triantafyllou
,
M. S
, et al
2008
, “
Experiments in Direct Energy Extraction Through Flapping Foils
,” The Eighteenth International Offshore and Polar Engineering Conference,
International Society of Offshore and Polar Engineers
, Vancouver, BC, Canada, July 6–11, Paper No.
ISOPE-I-08-040
.https://onepetro.org/ISOPEIOPEC/proceedingsabstract/ISOPE08/All-ISOPE08/ISOPE-I-08-040/10604
61.
Lighthill
,
M. J.
,
1970
, “
Aquatic Animal Propulsion of High Hydromechanical Efficiency
,”
J. Fluid Mech.
,
44
(
2
), pp.
265
301
.10.1017/S0022112070001830
62.
Streitlien
,
K.
, and
Triantafyllou
,
G.
,
1998
, “
On Thrust Estimates for Flapping Foils
,”
J. Fluids Struct.
,
12
(
1
), pp.
47
55
.10.1006/jfls.1997.0123
63.
Farooq
,
H.
,
Ghommem
,
M.
,
Khalid
,
M. S. U.
, and
Akhtar
,
I.
,
2022
, “
Numerical Investigation of Hydrodynamic Performance of Flapping Foils for Energy Harvesting
,”
Ocean Eng.
,
260
, p.
112005
.10.1016/j.oceaneng.2022.112005
64.
Hughes
,
T. J.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Courier Corporation
, New York.
65.
Connor
,
J. J.
, and
Brebbia
,
C. A.
,
2013
,
Finite Element Techniques for Fluid Flow
,
Newnes
, London, UK.
66.
Segerlind
,
L. J.
,
1976
,
Applied Finite Element Analysis
, Vol.
316
,
Wiley
,
New York
.
67.
Hamada
,
A. A.
,
Ayyad
,
M.
, and
Guaily
,
A.
,
2020
, “
Variants of the Finite Element Method for the Parabolic Heat Equation: Comparative Numerical Study
,”
Recent Advances in Engineering Mathematics and Physics
,
M. H. F.
El-Sayed
, and
M. A.
Hassanein
, eds.,
Springer International Publishing
, Switzerland.
68.
Hughes
,
T. J.
,
Franca
,
L. P.
, and
Hulbert
,
G. M.
,
1989
, “
A New Finite Element Formulation for Computational Fluid Dynamics: Viii. the Galerkin/Least-Squares Method for Advective-Diffusive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
73
(
2
), pp.
173
189
.10.1016/0045-7825(89)90111-4
69.
Ayyad
,
M.
,
Guaily
,
A.
, and
Hassanein
,
M. A.
,
2021
, “
Stabilized Variational Formulation of an Oldroyd-b Fluid Flow Equations on a Graphic Processing Unit (Gpu) Architecture
,”
Comput. Phys. Commun.
,
258
, p.
107495
.10.1016/j.cpc.2020.107495
70.
Sallam
,
O.
,
El-Refaey
,
A. M.
, and
Guaily
,
A.
,
2020
, “
Water-Aluminum Oxide Nano-Fluid Nusselt Number Enhancement and Neural Network Accelerated Prediction
,”
Recent Advances in Engineering Mathematics and Physics
,
Springer
, Switzerland, pp.
343
359
.
71.
Thomée
,
V.
,
1984
,
Galerkin Finite Element Methods for Parabolic Problems
, Lecture Notes in Mathematics, No. 1054,
Springer
, New York.
72.
Strikwerda
,
J. C.
,
2004
,
Finite Difference Schemes and Partial Differential Equations
,
SIAM
, Philadelphia, PA.
73.
Bicanic
,
N.
, and
Máca
,
J.
,
1991
, “
Mass Lumping by Spectral Matching
,”
The Finite Element Method in the 1990's
,
Springer
, New York, pp.
346
356
.
74.
Wendland
,
E.
, and
Schulz
,
H.
,
2005
, “
Numerical Experiments on Mass Lumping for the Advection-Diffusion Equation
,”
Rev. Minerva
,
2
(
2
), pp.
227
233
.http://www.fipai.org.br/Minerva%2002(02)%2012.pdf
75.
Osher
,
S.
, and
Fedkiw
,
R.
,
2006
,
Level Set Methods and Dynamic Implicit Surfaces
, Vol.
153
,
Springer Science & Business Media
, New York.
76.
Osher
,
S.
, and
Fedkiw
,
R. P.
,
2001
, “
Level Set Methods: An Overview and Some Recent Results
,”
J. Comput. Physics
,
169
(
2
), pp.
463
502
.10.1006/jcph.2000.6636
77.
Osher
,
S.
, and
Fedkiw
,
R.
,
2003
, “
Signed Distance Functions
,”
Level Set Methods and Dynamic Implicit Surfaces
,
Springer
, New York, pp.
17
22
.
78.
Richardson
,
L. F.
,
1911
, “
Ix. the Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London
,
210
(
459–470
), pp.
307
357
.10.1098/rsta.1911.0009
79.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
80.
Fredsoe
,
J.
, and
Sumer
,
M.
,
1997
,
Hydrodynamics Around Cylindrical Structures
, World Scientific, NJ.
81.
Huang
,
Y-Q.
,
Deng
,
J.
, and
Ren
,
A-L.
,
2003
, “
Research on Lift and Drag in Unsteady Viscous Flow Around Circular Cylinders
,”
J.-Zhejiang Univ. Eng. Sci.
,
37
(
5
), pp.
596
601
.
82.
Williamson
,
C. H.
,
1989
, “
Oblique and Parallel Modes of Vortex Shedding in the Wake of a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
,
206
, pp.
579
627
.10.1017/S0022112089002429
83.
Srinath
,
D.
, and
Mittal
,
S.
,
2009
, “
Optimal Airfoil Shapes for Low Reynolds Number Flows
,”
Int. J. Numer. Methods Fluids
,
61
(
4
), pp.
355
381
.10.1002/fld.1960
84.
Koopmann
,
G.
,
1967
, “
The Vortex Wakes of Vibrating Cylinders at Low Reynolds Numbers
,”
J. Fluid Mech.
,
28
(
3
), pp.
501
512
.10.1017/S0022112067002253
85.
Wang
,
Z.
,
Du
,
L.
,
Zhao
,
J.
, and
Sun
,
X.
,
2017
, “
Structural Response and Energy Extraction of a Fully Passive Flapping Foil
,”
J. Fluids Struct.
,
72
, pp.
96
113
.10.1016/j.jfluidstructs.2017.05.002
86.
Dekhatawala
,
A.
, and
Shah
,
R.
,
2019
, “
Numerical Investigation of Two-Dimensional Laminar Flow Past Various Oscillating Cylinder
,”
Advances in Fluid and Thermal Engineering
,
Springer
, Singapore, pp.
261
271
.
87.
Lu
,
K.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2014
, “
Nonsinusoidal Motion Effects on Energy Extraction Performance of a Flapping Foil
,”
Renewable Energy
,
64
, pp.
283
293
.10.1016/j.renene.2013.11.053
88.
Gharali
,
K.
, and
Johnson
,
D. A.
,
2013
, “
Dynamic Stall Simulation of a Pitching Airfoil Under Unsteady Freestream Velocity
,”
J. Fluids Struct.
,
42
, pp.
228
244
.10.1016/j.jfluidstructs.2013.05.005
89.
Benton
,
S.
, and
Visbal
,
M.
,
2019
, “
The Onset of Dynamic Stall at a High, Transitional Reynolds Number
,”
J. Fluid Mech.
,
861
, pp.
860
885
.10.1017/jfm.2018.939
90.
Xu
,
J.
,
Zhu
,
H.
,
Guan
,
D.
, and
Zhan
,
Y.
,
2019
, “
Numerical Analysis of Leading-Edge Vortex Effect on Tidal Current Energy Extraction Performance for Chord-Wise Deformable Oscillating Hydrofoil
,”
J. Marine Sci. Eng.
,
7
(
11
), p.
398
.10.3390/jmse7110398
You do not currently have access to this content.