Abstract

The shape, size and location of the stagnation zone between flat non-parallel walls that make up the corner of a tube with non-circular cross section through which a phase change material of the Bingham plastic type flows is investigated. We show that the stagnant area is bounded by a convex meniscus whose size depends on the degree of plasticity and the vertex angle. The maximum and minimum energy dissipation occurs at the wall and at the bisectrix, respectively. The stagnant zone can be altogether avoided by modifying the shape of the wall in the corner area. A new design of the cross section of the tube that allows reducing or eliminating this area to optimize the mass transport is developed. Two optimal solutions, a vertex with a straight cut and a concavely curved vertex, are proposed.

References

1.
Bingham
,
E. C.
,
1922
,
Fluidity and Plasticity
,
McGraw-Hill
, New York.
2.
Herschel
,
W. H.
, and
Bulkley
,
T.
,
1926
, “
Measurement of Consistency as Applied to Rubber-Benzene Solutions
,”
Am. Soc. Test Proc.
,
26
, pp.
621
633
.
3.
Letelier
,
M. F.
,
Siginer
,
D. A.
, and
Barrera
,
C.
,
2017
, “
On the Physics of Viscoplastic Fluid Flow in Non-Circular Tubes
,”
Int. J. Non-Linear Mech.
,
88
, pp.
1
10
.10.1016/j.ijnonlinmec.2016.09.012
4.
Letelier
,
M. F.
,
Siginer
,
D. A.
,
Stockle
,
J.
,
Barrera
,
C.
,
Godoy
,
F.
, and
Rosas
,
C.
,
2018
, “
Bingham Fluids: Deformation and Energy Dissipation in Triangular Cross Section Tube Flow
,”
Meccanica
,
53
(
1–2
), pp.
161
173
.10.1007/s11012-017-0716-z
5.
Saramito
,
P.
, and
Roquet
,
N.
,
2001
, “
An Adaptive Finite Element Method for Viscoplastic Fluid Flows in Pipes
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
40–41
), pp.
5391
5412
.10.1016/S0045-7825(01)00175-X
6.
Roquet
,
N.
, and
Saramito
,
P.
,
2008
, “
An Adaptive Finite Element Method for Viscoplastic Flows in a Square Pipe With Stick–Slip at the Wall
,”
J. Non-Newtonian Fluid Mech.
,
155
(
3
), pp.
101
115
.10.1016/j.jnnfm.2007.12.003
7.
Papanastasiou
,
T. C.
, and
Boudouvis
,
A. G.
,
1997
, “
Flows of Viscoplastic Materials: Models and Computations
,”
Comput. Struct.
,
64
(
1–4
), pp.
677
694
.10.1016/S0045-7949(96)00167-8
8.
Letelier
,
M. F.
, and
Siginer
,
D. A.
,
2007
, “
On the Flow of a Class of Viscoinelastic-Viscoplastic Fluids in Tubes of Non-Circular Contours
,”
Int. J. Eng. Sci.
,
45
(
11
), pp.
873
881
.10.1016/j.ijengsci.2007.07.002
9.
Moreno
,
E.
, and
Cervera
,
M.
,
2016
, “
Stabilized Finite Elements for Bingham and Herschel-Bulkley Confined Flows. Part I: Formulation
,”
Rev. Int. métodos Numér. cálc. Diseño Ing.
,
32
(
2
), pp.
100
109
.10.1016/j.rimni.2015.02.004
10.
Letelier
,
M. F.
,
Siginer
,
D. A.
,
Díaz
,
N.
, and
Báez
,
E.
,
2016
, “
Effect of Elasticity on Viscoplastic Flow
,”
ASME Int. Mech. Eng. Congr. Expos.
,
7
, p.
V007T09A020
.10.1115/IMECE2016-65025
11.
Letelier
,
M. F.
,
Barrera
,
C.
,
Siginer
,
D. A.
, and
González
,
A.
,
2018
, “
Elastoviscoplastic Fluid Flow in Non-Circular Tubes: Transversal Field and Interplay of Elasticity and Plasticity
,”
Appl. Math. Modell.
,
54
, pp.
768
781
.10.1016/j.apm.2017.10.008
12.
Safronchik
,
A. I.
,
1959
, “
Non-Steady Flows of a Visco-Plastic Material Between Parallel Walls
,”
J. Appl. Math. Mech.
,
23
(
5
), pp.
1314
1327
.10.1016/0021-8928(59)90132-7
13.
Safronchik
,
A. I.
,
1959
, “
Rotation of a Cylinder With a Variable Angular Velocity in a Visco-Plastic Medium
,”
J. Appl. Math. Mech.
,
23
(
6
), pp.
1504
1511
.10.1016/0021-8928(59)90007-3
14.
Safronchik
,
A. I.
,
1960
, “
Unsteady Flow of a Visco-Plastic Material in a Circular Tube
,”
J. Appl. Math. Mech.
,
24
(
1
), pp.
200
207
.10.1016/0021-8928(60)90154-4
15.
Mosolov
,
P. P.
, and
Mjasnikov
,
V. P.
,
1965
, “
Variational Methods in the Theory of Viscous-Plastic Medium
,”
J. Appl. Math. Mech.
,
29
, pp.
468
492
.
16.
Mosolov
,
P. P.
, and
Mjasnikov
,
V. P.
,
1966
, “
On Stagnant Flow Regions of a Visco-Plastic Medium in Pipes
,”
J. Appl. Math. Mech.
,
30
, pp.
705
719
.
17.
Mosolov
,
P. P.
, and
Mjasnikov
,
V. P.
,
1967
, “
On Qualitative Singularities of the Flow of a Visco-Plastic Medium in Pipes
,”
J. Appl. Math. Mech.
,
31
, pp.
581
585
.
18.
Huilgol
,
R. R.
,
2004
, “
On Kinetic Conditions Affecting the Existence and Non-Existence of a Moving Yield Surface in Unsteady Unidirectional Flows of Bingham Fluids
,”
J. Non-Newtonian Fluid Mech.
,
123
(
2–3
), pp.
215
221
.10.1016/j.jnnfm.2004.08.009
19.
Huilgol
,
R. R.
,
2010
, “
On the Description of the Motion of the Yield Surface in Unsteady Shearing Flows of a Bingham Fluid as a Jerk Wave
,”
J. Non-Newtonain Fluid Mech.
,
165
(
1–2
), pp.
65
69
.10.1016/j.jnnfm.2009.09.003
20.
Glowinski
,
R.
,
1974
, “
Sur l′Écoulement d′un Fluide de Bingham Dans Une Conduite Cylindrique
,”
J. Méc.
,
13
, pp.
601
621
.
21.
Sekimoto
,
K.
,
1991
, “
An Exact Non-Stationary Solution of Simple Shear Flow in a Bingham Fluid
,”
J. Non-Newtonian Fluid Mech.
,
39
(
1
), pp.
107
113
.10.1016/0377-0257(91)80006-6
22.
Sekimoto
,
K.
,
1993
, “
Motion of the Yield Surface in a Bingham Fluid With a Simple-Shear Geometry
,”
J. Non-Newtonain Fluid Mech.
,
46
(
2–3
), pp.
219
227
.10.1016/0377-0257(93)85047-E
23.
Duvaut
,
G.
, and
Lions
,
J. L.
,
1972
,
Les Inéquations en Méchanique et en Physique
,
Dunod
, Paris, France.
24.
Fortin
,
M.
,
1972
, “
Calcul Numérique Des Écoulements Des Fluides de Bingham et Des Fluides Newtoniens Incompressibles Par la Méthode Des Éléments Finis
,” Thèse, Paris VI, Paris, France.
25.
Fortin
,
M.
, and
Glowinski
,
R.
,
1982
,
Méthodes de Lagrangian Augmenté. Applications à la Résolution Numérique de Problèmes Aux Limites, Méthodes Mathématiques de l′Informatique
, Dunod, Paris (The English Version: “Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Book in the Series “Studies in Mathematics and its Applications,”
North-Holland
,
Elsevier
).
26.
Glowinski
,
R.
, and
Le-Tallec
,
P.
,
1989
, “
Augmented Lagrangian and Operator-Splitting Methods in Non-Linear Mechanics
,” Studies in Applied and Numerical Mathematics, Society for Industrial and Applied Mathematics (
SIAM
), Philadelphia, PA10.1137/1.9781611970838
27.
Huilgol
,
R. R.
, and
Panizza
,
M. P.
,
1995
, “
On the Determination of the Plug Flow Region in Bingham Fluids Through the Application of Variational Inequalities
,”
J. Non-Newtonian Fluid Mech.
,
58
(
2–3
), pp.
207
217
.10.1016/0377-0257(95)01342-S
28.
Walton
,
I.
, and
Bittleston
,
S.
,
1991
, “
The Axial Flow of a Bingham Plastic in a Narrow Eccentric Annulus
,”
J. Fluid Mech.
,
222
(
1
), pp.
39
60
.10.1017/S002211209100099X
29.
Wachs
,
A.
,
2007
, “
Numerical Simulation of Steady Bingham Flow Through an Eccentric Annular Cross-Section by Distributed Lagrange Multiplier Fictitious Domain and Augmented Lagrangian Methods
,”
J. Non-Newtonian Fluid Mech.
,
142
(
1–3
), pp.
183
198
.10.1016/j.jnnfm.2006.08.009
30.
Akram
,
S.
,
Nadeem
,
S.
, and
Hussain
,
A.
,
2014
, “
Effects of Heat and Mass Transfer on Peristaltic Flow of a Bingham Fluid in the Presence of Inclined Magnetic Field and Channel With Different Wave Forms
,”
J. Magn. Magn. Mater.
,
362
, pp.
184
192
.10.1016/j.jmmm.2014.02.063
31.
Turan
,
O.
,
Chakraborty
,
N.
, and
Poole
,
R.
,
2010
, “
Laminar Natural Convection of Bingham Fluids in a Square Enclosure With Differentially Heated Side Walls
,”
J. Non-Newtonian Fluid Mech.
,
165
(
15–16
), pp.
901
913
.10.1016/j.jnnfm.2010.04.013
32.
Tang
,
G.
,
Wang
,
S.
,
Ye
,
P.
, and
Tao
,
W.
,
2011
, “
Bingham Fluid Simulation With the Incompressible Lattice Boltzmann Model
,”
J. Non-Newtonian Fluid Mech.
,
166
(
1–2
), pp.
145
151
.10.1016/j.jnnfm.2010.11.005
33.
Camilo
,
C.
,
2014
, “
Teorema Del Binomio y Aplicaciones
,” M.Sc. thesis,
Universidad Nacional de Colombia
,
Bogotá, Colombia
.
34.
Thomas
,
G.
,
2005
,
Cálculo Varias Variables
,
Pearson Educación
,
Mexico
.
35.
Chapra
,
S.
, and
Canale
,
R.
,
2010
,
Numerical Methods for Engineers
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.