Abstract

In order to improve the aerodynamic performance of the airfoil, the airfoil shape and the angle of attack (AOA) are optimized at the same time by the multi-island genetic algorithm in this paper. The goal of the optimization is to maximize the lift-to-drag ratio which is calculated by the computational fluid dynamics method. The airfoil is parameterized by the Bézier curve. The thickness and the camber of airfoil are no longer restricted to ensure a wide range of airfoil generation. The airfoil is optimized under different Reynolds numbers. The optimized airfoils obtained by the unconstrained AOA method are compared with several standard airfoils. The results show that the maximum lift-to-drag ratio of the optimized airfoil is much greater than the compared airfoils, and the optimized airfoils have good aerodynamic characteristics in a wide range of angle of attack. By comparing with the optimized airfoils obtained by the constrained AOA method, it shows that the constrained AOA method can't guarantee that the preconstrained angle of attack is the optimal angle of attack of the airfoil, nor can obtain the maximum lift-to-drag ratio airfoil of all angles of attack and all airfoils. However, by using the angle of attack as one of the optimization variables, these problems can be solved well.

References

1.
Anitha
,
P.
,
Shamili
,
G. K.
,
Ravi
,
K. P.
, and
Sabari
,
V. R.
,
2018
, “
Airfoil Shape Optimization Using CFD and Parametrization Methods
,”
Mater. Today Proc.
,
5
(
2
), pp.
5364
5373
.10.1016/j.matpr.2017.12.122
2.
László
,
N.
,
János
,
V.
, and
Máté
,
L.
, January,
2006
, “
RANS Simulation of RAF6 Airfoil
,”
epub.
https://www.researchgate.net/publication/228413398_RANS_simulation_of_RAF6_airfoil
3.
Timmer
,
W. A.
, and
Rooij
,
R. P. J. O. M.
,
2003
, “
Summary of the Delft University Wind Turbine Dedicated Airfoils
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
488
496
.10.1115/1.1626129
4.
Peter
,
F.
, and
Christian
,
B.
, January,
2001
, “
Design and Verification of the New Risø-A1 Airfoil Family for Wind Turbines
,”
AIAA
Paper No. 2001-0028.10.2514/6.2001-28
5.
Peter
,
F.
,
Christian
,
B.
,
Mac
,
G.
, and
Loannis
,
A.
,
2004
, “
Design and Verification of the Risø-B1 Airfoil Family for Wind Turbines
,”
J. Sol. Energy Eng.
,
126
(
4
), pp.
1002
1010
.10.1115/1.1766024
6.
Gardner
,
B.
, and
Selig
,
M.
,
2003
, “
Airfoil Design Using Genetic Algorithm and an Inverse Method
,” 41st Aerospace Sciences Meeting and Exhibit, Reno, NV,
AIAA
Paper No. 2003–0043.10.2514/6.2003-43
7.
Morris
,
A. M.
,
Allen
,
C.
, and
Rendall
,
T. C. S.
,
1978
, “
Wing Design by Aerodynamic and Aeroelastic Shape Optimization
,”
J. Aircr.
,
15
(
7
), pp.
407
412
.10.2514/6.2008-7054
8.
Eyi
,
S.
,
Hager
,
J. O.
, and
Lee
,
K. D.
,
1994
, “
Airfoil Design Optimization Using the Navier-Stokes Equations
,”
J. Optim. Theory Appl.
,
83
(
3
), pp.
447
461
.10.1007/BF02207637
9.
Chiba
,
K.
,
Obayashi
,
S.
, and
Nakahashi
,
K.
,
2005
, “
High-Fidelity Multidisciplinary Design Optimization of Aerostructural Wing Shape for Regional Jet Aircraft
,”
International Conference on Evolutionary Multi-Criterion Optimization
, Vol.
3410
, Springer, Berlin, Heidelberg, pp.
621
635
.10.1007/978-3-540-31880-4_43
10.
Kroll
,
N.
,
Gauger
,
N. R.
,
Brezillon
,
J.
,
Dwight
,
R.
,
Fazzolari
,
A.
,
Vollmer
,
D.
,
Becker
,
K.
,
Barnewitz
,
H.
,
Schulz
,
V.
, and
Hazra
,
S.
,
2007
, “
Flow Simulation and Shape Optimization for Aircraft Design
,”
J. Comput. Appl. Math.
,
203
(
2
), pp.
397
411
.10.1016/j.cam.2006.04.012
11.
Ribeiro
,
A. F. P.
,
Awruch
,
A. M.
, and
Gomes
,
H. M.
,
2012
, “
An Airfoil Optimization Technique for Wind Turbines
,”
Appl. Math. Modell.
,
36
(
10
), pp.
4898
4907
.10.1016/j.apm.2011.12.026
12.
Liu
,
W.
,
Li
,
S.
,
Gong
,
Z.
, and
Jiang
,
Z.
,
2012
, “
Airfoil Optimization Design by Panel Methods for Small Size Aerial Vehicle at Low Reynolds Number
,”
Proceedings of the First International Conference on Mechanical Engineering and Material Science
, Atlantis Press, Paris, France, pp.
327
330
.10.2991/mems.2012.87
13.
Bourisli
,
R. I.
, and
Hamadeh
,
F. Z.
,
2020
, “
Optimizing NACA Airfoil Thickness Function Parameters for Maximum Lift-to-Drag Ratio
,”
AIAA
Paper No. 2020-1297.10.2514/6.2020-1297
14.
Hansen
,
T. H.
,
2018
, “
Airfoil Optimization for Wind Turbine Application
,”
Wind Energy
,
21
(
7
), pp.
502
514
.10.1002/we.2174
15.
Liu
,
Z.
,
Dong
,
L.
,
Moschetta
,
J.
,
Zhao
,
J.
, and
Yan
,
G.
,
2014
, “
Optimization of Nano-Rotor Blade Airfoil Using Controlled Elitist NSGA-II
,”
Int. J. Micro Air Veh.
,
6
(
1
), pp.
29
42
.10.1260/1756-8293.6.1.29
16.
Liang
,
Y.
,
Cheng
,
X.
,
Li
,
Z.
, and
Xiang
,
JWu.
,
2010
, “
Multi-Objective Robust Airfoil Optimization Based on Non-Uniform Rational B-Spline (NURBS) Representation
,”
Sci. China Technol. Sci.
,
53
(
10
), pp.
2708
2717
.10.1007/s11431-010-4075-4
17.
Kulfan
,
B. M.
, and
Bussoletti
,
J. E.
,
2006
, “
Fundamental Parametric Geometry Representations for Aircraft Component Shapes
,”
AIAA
Paper No. 2006-6948.10.2514/6.2006-6948
18.
Kulfan
,
B. M.
,
2007
, “
A Universal Parametric Geometry Representation Method-CST
,”
AIAA
Paper No. 2007-62.10.2514/6.2007-62
19.
Hicks
,
R. M.
, and
Henne
,
P. A.
,
1978
, “
Wing Design by Numerical Optimization
,”
J. Aircr.
,
15
(
7
), pp.
407
412
.10.2514/3.58379
20.
Boehm
,
W.
,
1987
, “
Bézier Presentation of Airfoils
,”
Comput. Aided Geom. Des.
,
4
(
1–2
), pp.
17
22
.10.1016/0167-8396(87)90021-5
21.
Lee
,
S.
, and
Lee
,
J.
,
2013
, “
Aerodynamic Analysis and Multi-Objective Optimization of Wings in Ground Effect
,”
Ocean Eng.
,
68
, pp.
1
13
.10.1016/j.oceaneng.2013.04.018
22.
Kumano
,
T.
,
Jesong
,
S.
, and
Obayashi
,
S.
,
2006
, “
Multidisciplinary Design Optimization of Wing Shape for a Small Jet Aircraft Using Kriging Model
,”
AIAA
Paper No. 2006-932.10.2514/6.2006-932
23.
Takenaka
,
K.
,
Obayashi
,
S.
, and
Nakahashi
,
K.
,
2005
, “
The Application of MDO Technologies to the Design of a High Performance Small Jet Aircraft Lessons Learned and Some Practical Concerns
,”
AIAA
Paper No. 2005-4797.10.2514/6.2005-4797
24.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer 4
,
Begell House
,
Antalya, Turkey
.
25.
Menter
,
F. R.
,
1992
, “
Influence of Free Stream Values on k-w Turbulence Model Predictions
,”
AIAA J.
,
30
(
6
), pp.
1657
1659
.10.2514/3.11115
26.
Li
,
T.
,
Hemida
,
H.
, and
Zhang
,
J.
,
2020
, “
Evaluation of SA-DES and SST-DES Models Using OpenFOAM for Calculating the Flow Around a Train Subjected to Crosswinds
,”
Proc. Inst. Mech. Eng.
,
234
(
10
), pp.
1346
1357
.10.1177/0954409719895652
27.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
28.
Menter
,
F.
,
Esch
,
T.
, and
Espinoza
,
H.
,
2001
, “
Elements of Industrial Heat Transfer Predictions
,”
Proceedings of COBEM 2001, Invited lectures16th Brazilian Congress of Mechanical Engineering (XVI Congresso Brasileiro de Engenharia Mecânica)
, Vol.
20
, Uberlândia–MG, Brazil, pp.
117
127
.https://www.researchgate.net/file.PostFileLoader.html?id=58500561b0366d121d756004&assetKey=AS:438841040478208@1481639265395
29.
Versteeg
,
H.
, and
Malalasekera
,
W.
,
2007
, “An Introduction to Computational Fluid Dynamics: The Finite Volume Method,”
Pearson Education Limited
,
Harlow, UK
.
30.
Menter
,
F. R.
,
1993
, “Zonal
Two Equation k-w Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906.10.2514/6.1993-2906
31.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publication Corporation
, New York.
32.
Gregory
,
N.
, and
O'Reilly
,
C. L.
,
1970
, “
Low-Speed Aerodynamic Characteristics of NACA 0012 Aerofoil Sections, Including the Effects of Upper-Surface Roughness Simulation Hoar Frost
,”
RM
, No.
3726
, pp.
1
33
.
33.
Ladson
,
C. L.
,
Hill
,
A. S.
, and
Johnson
,
W. G.
,
1987
, “
Pressure Distributions From High Reynolds Number Transonic Tests of an NACA 0012 Airfoil in the Langley 0.3-Meter Transonic Cryogenic Tunnel
,” NASA, Washington, DC, Report No. NASA TM 100526.
34.
Ahuja
,
V.
, and
Hosangadi
,
A.
,
2005
, “
Design Optimization of Complex Flow Fields Using Evolutionary Algorithms and Hybrid Unstructured CFD
,”
AIAA
Paper No. 2005-4984.10.2514/6.2005-4984
35.
Gu
,
Y.
,
Pei
,
J.
,
Yuan
,
S.
,
Zhang
,
J.
, and
Wang
,
W.
,
2016
, “
Multi-Objective Optimization of Centrifugal Pump Impeller Based on Kriging Model and Multi-Island Genetic Algorithm
,”
16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI.https://hal.archivesouvertes.fr/hal-01887493
36.
Srinivas
,
M.
, and
Patnaik
,
L. M.
,
1994
, “
Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms
,”
IEEE Trans. Syst. Man Cybern.
,
24
(
4
), pp.
656
667
.10.1109/21.286385
You do not currently have access to this content.