Severe vibrations induced by flow instabilities in the nuclear reactor coolant pump (RCP) are detrimental to the safe operation of the pump. Due to the particular spherical casing in the RCP, the internal flow structures are extremely ambiguity and complicated. The goal of the present work is to shed comprehensive light on the unsteady flow structures and its correlation with the pressure pulsations by using large eddy simulation (LES) method of the RCP. The vorticity distribution and the shedding vortex from the blade trailing edge are depicted in detail. Furthermore, the internal correlations between the flow unsteadiness and pressure pulsation are illustrated in some special regions of the RCP. Evidently, some main excitation components in the pressure spectra are excited by the shedding vortex. Besides, components at blade passing frequency (fBPF) are closely associated with rotor–stator interaction between the wake flow from the impeller outlet and unsteadiness vortexes shedding from the diffuser blade trailing edge. It is thought to be that the pressure pulsations of the RCP are closely associated with the corresponding vorticity distribution and the unsteady vortex shedding effect.

References

1.
Cho
,
Y.-J.
,
Kim
,
Y.-S.
,
Cho
,
S.
,
Kim
,
S.
,
Bae
,
B.-U.
,
Chung
,
H.-J.
,
Youn
,
Y.-J.
,
Park
,
J.-K.
,
Choi
,
H.-S.
,
Jeon
,
W.-J.
,
Kim
,
B.-D.
,
Kwon
,
T.-S.
, and
Song
,
C.-H.
,
2014
, “
Advancement of Reactor Coolant Pump (RCP) Performance Verification Test in KAERI
,”
ASME
Paper No. ICONE22-31075.
2.
De
,
C.
,
Zhen-Qiang
,
Y.
,
Ya-Bo
,
X.
, and
Hong
,
S.
,
2014
, “
Numerical Study on Seismic Response of the Reactor Coolant Pump in Advanced Passive Pressurized Water Reactor
,”
Nucl. Eng. Des.
,
278
, pp.
39
49
.
3.
Poullikkas
,
A.
,
2003
, “
Effects of Two-Phase Liquid-Gas Flow on the Performance of Nuclear Reactor Cooling Pumps
,”
Prog. Nucl. Energy
,
42
(
1
), pp.
3
10
.
4.
Chang
,
C. H.
,
2000
, “
Two Phase Flow Performance of Nuclear Reactor Cooling Pumps
,”
Prog. Nucl. Energy
,
36
(
2
), pp.
123
130
.
5.
Rahim
,
F. C.
,
Yousefi
,
P.
, and
Aliakbari
,
E.
,
2012
, “
Simulation of the AP1000 Reactor Containment Pressurization During Loss of Coolant Accident
,”
Prog. Nucl. Energy
,
60
, pp.
129
134
.
6.
Gao
,
H.
,
Gao
,
F.
,
Zhao
,
X.
,
Chen
,
J.
, and
Cao
,
X.
,
2011
, “
Transient Flow Analysis in Reactor Coolant Pump Systems During Flow Coastdown Period
,”
Nucl. Eng. Des.
,
241
(
2
), pp.
509
514
.
7.
Knierim
,
C.
,
Baumgarten
,
S.
,
Fritz
,
J.
, and
Coon
,
M. T.
,
2005
, “
Design Process for an Advanced Reactor Coolant Pump for a 1400 MW Nuclear Power Plant
,”
ASME
Paper No. FEDSM2005-77340.
8.
Deyou
,
L.
,
Hongjie
,
W.
,
Gaoming
,
X.
,
Ruzhi
,
G.
,
Xianzhu
,
W.
, and
Zhansheng
,
L.
,
2015
, “
Unsteady Simulation and Analysis for Hump Characteristics of a Pump Turbine Model
,”
Renewable Energy
,
77
, pp.
32
42
.
9.
Zhang
,
N.
,
Yang
,
M.
,
Gao
,
B.
,
Li
,
Z.
, and
Ni
,
D.
,
2015
, “
Experimental Investigation on Unsteady Pressure Pulsation in a Centrifugal Pump With Special Slope Volute
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
061103
.
10.
Spence
,
R.
, and
Amaral-Teixeira
,
J.
,
2008
, “
Investigation Into Pressure Pulsations in a Centrifugal Pump Using Numerical Methods Supported by Industrial Tests
,”
Comput. Fluids
,
37
(
6
), pp.
690
704
.
11.
Zhang
,
F.
,
Yuan
,
S.
,
Fu
,
Q.
, and
Tao
,
Y.
,
2015
, “
Investigation on Transient Flow of a Centrifugal Charging Pump in the Process of High Pressure Safety Injection
,”
Nucl. Eng. Des.
,
293
, pp.
119
126
.
12.
Barrio
,
R.
,
Blanco
,
E.
,
Parrondo
,
J.
,
González
,
J.
, and
Fernández
,
J.
,
2008
, “
The Effect of Impeller Cutback on the Fluid-Dynamic Pulsations and Load at the Blade-Passing Frequency in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111102
.
13.
Baumgarten
,
S.
,
Brecht
,
B.
,
Bruhns
,
U.
, and
Fehring
,
P.
,
2010
, “
Reactor Coolant Pump Type RUV for Westinghouse Reactor AP1000
,” Proceedings of the International Congress on Advances in Nuclear Power Plants, San Diego, CA, June 12–17, Paper No. 10339.
14.
Posa
,
A.
,
Lippolis
,
A.
,
Verzicco
,
R.
, and
Balaras
,
E.
,
2011
, “
Large-Eddy Simulations in Mixed-Flow Pumps Using an Immersed-Boundary Method
,”
Comput. Fluids
,
47
(
1
), pp.
33
43
.
15.
Posa
,
A.
,
Lippolis
,
A.
, and
Balaras
,
E.
,
2015
, “
Large-Eddy Simulation of a Mixed-Flow Pump at Off-Design Conditions
,”
ASME J. Fluids Eng.
,
137
(
10
), p.
101302
.
16.
Muggli
,
F. A.
,
Holbein
,
P.
, and
Dupont
,
P.
,
2002
, “
CFD Calculation of a Mixed Flow Pump Characteristic From Shutoff to Maximum Flow
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
798
802
.
17.
Miyabe
,
M.
,
Furukawa
,
A.
,
Maeda
,
H.
,
Umeki
,
I.
, and
Jittani
,
Y.
,
2008
, “
On Improvement of Characteristic Instability and Internal Flow in Mixed Flow Pumps
,”
J. Fluid Sci. Technol.
,
3
(
6
), pp.
732
743
.
18.
Miyabe
,
M.
,
Maeda
,
H.
,
Umeki
,
I.
, and
Jittani
,
Y.
,
2006
, “
Unstable Head-Flow Characteristic Generation Mechanism of a Low Specific Speed Mixed Flow Pump
,”
J. Therm. Sci.
,
15
(
2
), pp.
115
120
.
19.
Kato
,
C.
,
Mukai
,
H.
, and
Manabe
,
A.
,
2003
, “
Large-Eddy Simulation of Unsteady Flow in a Mixed-Flow Pump
,”
Int. J. Rotating Mach.
,
9
(
5
), pp.
345
351
.
20.
Kato
,
C.
,
Mukai
,
H.
, and
Manabe
,
A.
,
2002
, “
LES of Internal Flows in a Mixed-Flow Pump With Performance Instability
,”
ASME
Paper No. FEDSM2002-31205.
21.
Gao
,
B.
,
Zhang
,
N.
,
Li
,
Z.
,
Ni
,
D.
, and
Yang
,
M.
,
2016
, “
Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051106
.
22.
Gao
,
Z.
,
Zhu
,
W.
,
Lu
,
L.
,
Deng
,
J.
,
Zhang
,
J.
, and
Wuang
,
F.
,
2014
, “
Numerical and Experimental Study of Unsteady Flow in a Large Centrifugal Pump With Stay Vanes
,”
ASME J. Fluids Eng.
,
136
(
7
), p.
071101
.
23.
Alatrash
,
Y.
,
Kang
,
H.
,
Yoon
,
H.
,
Seo
,
K.
,
Chi
,
D.-Y.
, and
Yoon
,
J.
,
2015
, “
Experimental and Analytical Investigations of Primary Coolant Pump Coastdown Phenomena for the Jordan Research and Training Reactor
,”
Nucl. Eng. Des.
,
286
, pp.
60
66
.
24.
Stel
,
H.
,
Amaral
,
G. D. L.
,
Negra
,
C. O. R.
,
Chiva
,
S.
,
Estevam
,
V.
, and
Morales
,
R. E. M.
,
2014
, “
Numerical Analysis of the Fluid Flow in the First Stage of a Two-Stage Centrifugal Pump With a Vaned Diffuser
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071104
.
25.
Kato
,
C.
,
Kaiho
,
M.
, and
Manabe
,
A.
,
2003
, “
An Overset Finite-Element Large-Eddy Simulation Method With Applications to Turbomachinery and Aeroacoustics
,”
ASME J. Appl. Mech.
,
70
(
1
), pp.
32
43
.
26.
Ni
,
D.
,
Yang
,
M.
,
Gao
,
B.
,
Zhang
,
N.
, and
Li
,
Z.
,
2016
, “
Flow Unsteadiness and Pressure Pulsations in a Nuclear Reactor Coolant Pump
,”
Strojniški Vestn.—J. Mech. Eng.
,
62
(
4
), pp.
231
242
.
27.
Di Sarli
,
V.
,
Di Benedetto
,
A.
,
Russo
,
G.
,
Jarvis
,
S.
,
Long
,
E. J.
, and
Hargrave
,
G. K.
,
2009
, “
Large Eddy Simulation and PIV Measurements of Unsteady Premixed Flames Accelerated by Obstacles
,”
Flow, Turbul. Combust.
,
83
(
2
), pp.
227
250
.
28.
Voke
,
P. R.
,
1996
, “
Subgrid-Scale Modelling at Low Mesh Reynolds Number
,”
Theor. Comput. Fluid Dyn.
,
8
(
2
), pp.
131
143
.
29.
Zhou
,
L.
,
Shi
,
W.
,
Cao
,
W.
, and
Yang
,
H.
,
2015
, “
CFD Investigation and PIV Validation of Flow Field in a Compact Return Diffuser Under Strong Part-Load Conditions
,”
Sci. China: Technol. Sci.
,
58
(
3
), pp.
405
414
.
30.
Yang
,
Y.
,
2012
, “
Comparison of Reynolds averaged Navier–Stokes Based Simulation and Large-Eddy Simulation for One Isothermal Swirling Flow
,”
J. Therm. Sci.
,
21
(
2
), pp.
154
161
.
31.
Piomelli
,
U.
,
1999
, “
Large-Eddy Simulation: Achievements and Challenges
,”
Prog. Aerosp. Sci.
,
35
(
4
), pp.
335
362
.
32.
Sang-Hyuk
,
L.
,
Yi-Qi
,
W.
, and
Jung-Il
,
S.
,
2010
, “
Fourier and Wavelet Transformations Application to Fault Detection of Induction Motor With Stator Current
,”
J. Cent. South Univ. Technol. (Engl. Ed.)
,
17
(
1
), pp.
93
101
.
You do not currently have access to this content.