Abstract

The influence of angle matching in rotor–stator interference (RSI) zone on natural circulation resistance (NCR) of circulating pump in natural circulation condition is illustrated by numerical method, and the analysis and optimization method of natural circulation based on loss coefficient curve are established through experiments. The mechanism and analysis formula of runaway speed are extracted, and the distribution diagram of Euler head density function (EHDF) is obtained to carry out image processing and analysis of secondary flow. Then, the optimal design interval of setting angle of impeller outlet under low flow resistance is acquired. As for the natural circulation loss of static parts, the optimal design interval of guide vane inlet angle and outlet angle with low flow resistance is obtained by analyzing the EHDF distribution diagram of the whole flow parts, which accounts for the position and reason of resistance. In this paper, the mechanism between runaway speed and loss coefficient curve is revealed and the resistance is optimized through the design and analysis of the RSI region, which provides theoretical methods for the analysis of the impeller performance of axial-flow circulating pump. Furthermore, it is a reference for the optimization design of natural circulation system.

References

1.
Huang
,
B.
,
Pu
,
K.
,
Wu
,
P.
,
Wu
,
D.
, and
Leng
,
J.
,
2020
, “
Design, Selection and Application of Energy Recovery Device in Seawater Desalination: A Review
,”
Energies
,
13
(
16
), p.
4150
.10.3390/en13164150
2.
Cheng
,
K.
,
Meng
,
T.
,
Tian
,
C. P.
,
Yuan
,
H. S.
, and
Tan
,
S. C.
,
2018
, “
Experimental Investigation on Flow Characteristics of Pressure Drop Oscillations in a Closed Natural Circulation Loop
,”
Int. J. Heat Mass Transfer
,
122
, pp.
1162
1171
.10.1016/j.ijheatmasstransfer.2018.02.030
3.
Ahmed
,
N. M.
,
Gao
,
P. Z.
, and
Bello
,
S.
,
2019
, “Natural Circulation Systems in Nuclear Reactors: Advantages and Challenges,” 4th International Conference on Energy Engineering and Environmental Protection (
EEEP
), Xiamen, China, Nov. 19–21, 467, p.
012077
.10.1088/1755-1315/467/1/012077
4.
Shi
,
E.-B.
,
Fang
,
C.-Y.
,
Wang
,
C.
,
Xia
,
G.-L.
, and
Zhao
,
C.-N.
,
2015
, “
The Investigation of Passive Accident Mitigation Scheme for Advanced PWR NPP
,”
Ann. Nucl. Energy
,
85
, pp.
590
596
.10.1016/j.anucene.2015.06.012
5.
Li
,
W.
,
Yu
,
L.
,
Hao
,
J.
, and
Li
,
M.
,
2019
, “
Experimental and CFD Investigation on Flow Behaviors of a NPP Pump Under Natural Circulation Condition
,”
Sci. Technol. Nucl. Install.
,
2019
(
11
), pp.
1
10
.10.1155/2019/5250894
6.
Huang
,
B.
,
Zhang
,
M. M.
,
Pu
,
K. X.
,
Wu
,
P.
, and
Wu
,
D. Z.
,
2021
, “
Study on the Four-Quadrant Homologous Characteristic and Two-Phase Flow Head Degradation of a Reactor Coolant Pump
,”
ASME J. Pressure Vessel Technol.
,
143
(
4
), p.
041404
.10.1115/1.4049710
7.
Choi
,
K.-Y.
,
Kim
,
Y.-S.
,
Yi
,
S.-J.
, and
Baek
,
W.-P.
,
2008
, “
Development of a Pump Performance Model for an Integral Effect Test Facility
,”
Nucl. Eng. Des.
,
238
(
10
), pp.
2614
2623
.10.1016/j.nucengdes.2008.04.005
8.
Araya
,
F.
,
Murao
,
Y.
, and
Iwamura
,
T.
,
1995
, “
Transient Analysis for Design of Primary Coolant Pump Adopted to JAERI Passive Safety Reactor JPSR
,”
J. Nucl. Sci. Technol.
,
32
(
10
), pp.
1039
1046
.10.1080/18811248.1995.9731812
9.
Fu
,
H.
,
Michael
,
T. J.
, and
Carrica
,
P. M.
,
2015
, “
Computation on Self-Propulsion at Ship Point Based on a Body-Force Propeller
,”
J. Ship Mech.
,
19
(
7
), pp.
791
796
.https://www.webofscience.com/wos/alldb/full-record/CSCD:5479876
10.
Li
,
Z.
,
Fu
,
L.
,
Gong
,
W.
,
Gu
,
H.
, and
Jiang
,
Q.
,
2018
, “
Research on Characteristics of Artesian Flow in Axial Circulating Pump
,”
J. Eng. Thermophys.
,
39
(
12
), pp.
2677
2681
.https://www.webofscience.com/wos/alldb/full-record/CSCD:6380152
11.
Li
,
Z.
,
Li
,
M.
,
Zhou
,
C.
, and
Jiang
,
Q.
,
2020
, “
Experimental Study of Performance and Pressure Pulsation Characteristics of Circulating Pump Under Artesian Flow Conditions
,”
J. Eng. Thermophys.
,
41
(
9
), pp.
2193
2198
.https://www.webofscience.com/wos/alldb/full-record/CSCD:6791521
12.
Basu
,
D. N.
,
Bhattacharyya
,
S.
, and
Das
,
P. K.
,
2014
, “
A Review of Modern Advances in Analyses and Applications of Single-Phase Natural Circulation Loop in Nuclear Thermal Hydraulics
,”
Nucl. Eng. Des.
,
280
, pp.
326
348
.10.1016/j.nucengdes.2014.09.011
13.
Talebi
,
S.
,
Goudarzi
,
N.
, and
Dehka
,
S. N.
,
2021
, “
Using Organic Fluids in Natural Circulation Loop Systems for Absorbing of Heat From Low Temperature Renewable Energy Sources
,”
Energy
,
222
, p.
119962
.10.1016/j.energy.2021.119962
14.
Basu
,
D. N.
,
Bhattacharyya
,
S.
, and
Das
,
P. K.
,
2013
, “
Influence of Geometry and Operating Parameters on the Stability Response of Single-Phase Natural Circulation Loop
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
322
334
.10.1016/j.ijheatmasstransfer.2012.11.063
15.
Goudarzi
,
N.
, and
Talebi
,
S.
,
2015
, “
Improving Performance of Two-Phase Natural Circulation Loops by Reducing of Entropy Generation
,”
Energy
,
93
, pp.
882
899
.10.1016/j.energy.2015.09.101
16.
Gao
,
B.
,
Zhang
,
N.
,
Li
,
Z.
,
Ni
,
D.
, and
Yang
,
M.
,
2016
, “
Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051106
.10.1115/1.4031911
17.
Yang
,
S.-S.
,
Liu
,
H.-L.
,
Kong
,
F.-Y.
,
Xia
,
B.
, and
Tan
,
L.-W.
,
2014
, “
Effects of the Radial Gap Between Impeller Tips and Volute Tongue Influencing the Performance and Pressure Pulsations of Pump as Turbine
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
054501
. 10.1115/1.4026544
18.
Choi
,
J. W.
,
Choi
,
Y. D.
,
Kim
,
C. G.
, and
Lee
,
Y. H.
,
2010
, “
Flow Uniformity in a Multi-Intake Pump Sump Model
,”
J. Mech. Sci. Technol.
,
24
(
7
), pp.
1389
1400
.10.1007/s12206-010-0413-5
19.
Yang
,
F.
,
Liu
,
C.
,
Tang
,
F.
,
Zhou
,
J.
, and
Cheng
,
L.
,
2014
, “
Numerical Simulation on Hydraulic Performance of Axial-Flow Pumping System With Adjustable Inlet Guide Vanes
,”
Trans. Chin. Soc. Agric. Mach.
,
45
(
5
), pp.
51
58
.
20.
Luo
,
X. W.
,
Ji
,
B.
, and
Tsujimoto
,
Y.
,
2016
, “
A Review of Cavitation in Hydraulic Machinery
,”
J. Hydrodyn.
,
28
(
3
), pp.
335
358
.10.1016/S1001-6058(16)60638-8
21.
Kaya
,
D.
,
2003
, “
Experimental Study on Regaining the Tangential Velocity Energy of Axial Flow Pump
,”
Energy Convers. Manage.
,
44
(
11
), pp.
1817
1829
.10.1016/S0196-8904(02)00187-5
22.
Kim
,
S. W.
, and
Kim
,
Y. J.
,
2016
, “
The Effect of the Thickness and Angle of the Inlet and Outlet Guide Vane on the Performance of Axial-Flow Pump
,”
ASME Paper No. FEDSM2016-7939.
23.
Shi
,
L.
,
Yuan
,
Y.
,
Jiao
,
H.
,
Tang
,
F.
,
Cheng
,
L.
,
Yang
,
F.
,
Jin
,
Y.
, and
Zhu
,
J.
,
2021
, “
Numerical Investigation and Experiment on Pressure Pulsation Characteristics in a Full Tubular Pump
,”
Renewable Energy
,
163
, pp.
987
1000
.10.1016/j.renene.2020.09.003
24.
Wu
,
D.
,
Yan
,
P.
,
Chen
,
X.
,
Wu
,
P.
, and
Yang
,
S.
,
2015
, “
Effect of Trailing-Edge Modification of a Mixed-Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
10
), p.
101205
.10.1115/1.4030488
25.
Wu
,
C.
,
Pu
,
K.
,
Li
,
C.
,
Wu
,
P.
,
Huang
,
B.
, and
Wu
,
D.
,
2022
, “
Blade Redesign Based on Secondary Flow Suppression to Improve Energy Efficiency of a Centrifugal Pump
,”
Energy
,
246
, p.
1233940
.10.1016/j.energy.2022.123394
26.
Wu
,
C.
,
Zhang
,
W.
,
Wu
,
P.
,
Yi
,
J.
,
Ye
,
H.
,
Huang
,
B.
, and
Wu
,
D.
,
2021
, “
Effects of Blade Pressure Side Modification on Unsteady Pressure Pulsation and Flow Structures in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
143
(
11
), p.
111208
.10.1115/1.4051404
27.
Liu
,
Y.
,
Han
,
Y.
,
Tan
,
L.
, and
Wang
,
Y.
,
2020
, “
Blade Rotation Angle on Energy Performance and Tip Leakage Vortex in a Mixed Flow Pump as Turbine at Pump Mode
,”
Energy
,
206
, p.
118084
.10.1016/j.energy.2020.118084
28.
Ji
,
L. L.
,
Li
,
W.
,
Shi
,
W. D.
,
Chang
,
H.
, and
Yang
,
Z. Y.
,
2020
, “
Energy Characteristics of Mixed-Flow Pump Under Different Tip Clearances Based on Entropy Production Analysis
,”
Energy
,
199
, p.
117447
.10.1016/j.energy.2020.117447
29.
Pu
,
K.
,
Huang
,
B.
,
Miao
,
H.
,
Shi
,
P.
, and
Wu
,
D.
,
2022
, “
Quantitative Analysis of Energy Loss and Vibration Performance in a Circulating Axial Pump
,”
Energy
,
243
, p.
122753
.10.1016/j.energy.2021.122753
30.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
31.
Yan
,
P.
,
Chu
,
N.
,
Wu
,
D.
,
Cao
,
L.
,
Yang
,
S.
, and
Wu
,
P.
,
2017
, “
Computational Fluid Dynamics-Based Pump Redesign to Improve Efficiency and Decrease Unsteady Radial Forces
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011101
.10.1115/1.4034365
You do not currently have access to this content.