Abstract

Backward-facing step (BFS) flow is a benchmark case study in fluid mechanics. Its control by means of electromagnetic actuation has attracted great interest in recent years. This paper focuses on the effects of a uniform stationary magnetic field on the laminar ferrofluid BFS flows for the Reynolds number range 0.1Re400 and different expansion ratios. The coupled ferrohydrodynamic equations, including the microscopically derived magnetization equation, for a two-dimensional domain are solved numerically by an openfoam solver after validation and a test of accuracy. The application of a magnetic field causes the corner vortices in the concave corner behind the step to be retracted compared with their positions in the absence of a magnetic field. The maximum percentage of the normalized decrease in length of these eddies reaches 41.23% in our simulations. For small Reynolds numbers (<10), the flow separation points on the convex corner are lowered in the presence of a magnetic field. Furthermore, the dimensionless total pressure drop between the channel inlet and outlet decreases almost linearly with Reynolds number Re, but the drop is greater when a magnetic field is applied. On the whole, the normalized recirculation length of the corner vortex increases nonlinearly with increasing magnetic Reynolds number Rem and Brownian Péclet number Pe, but it tends to constant values in the limits Rem1 and Rem1.

References

1.
Anastasios
,
L.
, and
Nikolaos
,
A. M.
,
2015
, “
Topological Study of Steady State, Three Dimensional Flow Over A backward Facing Step
,”
Comput. Fluids
,
118
, pp.
1
18.
10.1016/j.compfluid.2015.05.019
2.
Ferrás
,
L. L.
,
Afonso
,
A. M.
,
Alves
,
M. A.
,
Nóbrega
,
J. M.
, and
Pinho
,
F. T.
,
2020
, “
Newtonian and Viscoelastic Fluid Flows Through an Abrupt 1:4 Expansion With Slip Boundary Conditions
,”
Phys. Fluids
,
32
(
4
), p.
043103
.10.1063/1.5145092
3.
Manela
,
A.
, and
Gibelli
,
L.
,
2020
, “
Free-Molecular and Near-Free-Molecular Gas Flows Over Backward Facing Steps
,”
J. Fluid Mech.
,
889
, p.
A22
.10.1017/jfm.2020.46
4.
Chen
,
L.
,
Asai
,
K.
,
Nonomura
,
T.
,
Xi
,
G.
, and
Liu
,
T.
,
2018
, “
A Review of Backward-Facing Step (BFS) Flow Mechanisms, Heat Transfer and Control
,”
Therm. Sci. Eng. Prog.
,
6
, pp.
194
216
.10.1016/j.tsep.2018.04.004
5.
Montazer
,
E.
,
Yarmand
,
H.
,
Salami
,
E.
,
Muhamad
,
M. R.
,
Kazi
,
S. N.
, and
Badarudin
,
A.
,
2018
, “
A Brief Review Study of Flow Phenomena Over a Backward-Facing Step and Its Optimization
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
994
1005
.10.1016/j.rser.2017.09.104
6.
Emmanuel
,
C.
,
André
,
G.
, and
Iraj
,
M.
,
2009
, “
Vortex Simulation of Active Control Strategies for Transitional Backward-Facing Step Flows
,”
Comput. Fluids
,
38
, pp.
1348
1360
.10.1016/j.compfluid.2008.01.036
7.
Zhao
,
L.
, and
Dong
,
M.
,
2020
, “
Effect of Suction on Laminar-Flow Control in Subsonic Boundary Layers With Forward-/Backward-Facing Steps
,”
Phys. Fluids
,
32
, p.
054108
.10.1063/5.0007624
8.
Li
,
Z.
,
Zhang
,
D.
,
Liu
,
Y.
,
Wu
,
C.
, and
Gao
,
N.
,
2020
, “
Effect of Periodic Perturbations on the Turbulence Statistics in a Backward-Facing Step Flow
,”
Phys. Fluids
,
32
(
7
), p.
075116
.10.1063/5.0015951
9.
Moayedi
,
H.
,
2020
, “
Numerical Investigation of the Effect of Oscillating Injection Nanofluid Flow on Forced Convection Heat Transfer Enhancement Over a Backward-Facing Step
,”
Eur. Phys. J. Plus
,
135
, p.
924
.10.1140/epjp/s13360-020-00942-3
10.
Matteo
,
C.
, and
Luigi de
,
L.
,
2021
, “
Modal Analysis of Actively Controlled Flow Past a Backward Facing Ramp
,”
Phys. Rev. Fluids
,
6
, p.
064608
.10.1103/PhysRevFluids.6.064608
11.
Mistrangelo
,
C.
,
2011
, “
Topological Analysis of Separation Phenomena in Liquid Metal Flow in Sudden Expansions—Part 2: Magnetohydrodynamic Flow
,”
J. Fluid Mech.
,
674
, pp.
132
162
.10.1017/S0022112011000607
12.
Kim
,
C. N.
,
2014
, “
Liquid Metal Magnetohydrodynamic Flows in an Electrically Conducting Rectangular Duct With Sudden Expansion
,”
Comput. Fluids
,
89
, pp.
232
241
.10.1016/j.compfluid.2013.11.002
13.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2020
, “
Hydro-Thermal Performance of CNT Nanofluid in Double Backward Facing Step With Rotating Tube Bundle Under Magnetic Field
,”
Int. J. Mech. Sci.
,
185
, p.
105876
.10.1016/j.ijmecsci.2020.105876
14.
Hilo
,
A. K.
,
Talib
,
A. R. A.
,
Iborra
,
A. A.
,
Sultan
,
M. T. H.
, and
Hamid
,
M. F. A.
,
2020
, “
Experimental Study of Nanofluids Flow and Heat Transfer Over a Backward-Facing Step Channel
,”
Powder Technol.
,
372
, pp.
497
505
.10.1016/j.powtec.2020.06.013
15.
Geridönmez
,
B. P.
, and
Öztop
,
H. F.
,
2021
, “
Effects of Inlet Velocity Profiles of Hybrid Nanofluid Flow on Mixed Convection Through a Backward Facing Step Channel Under Partial Magnetic Field
,”
Chem. Phys.
,
540
, p.
111010
.10.1016/j.chemphys.2020.111010
16.
Rosensweig
,
R. E.
,
2002
,
Ferrohydrodynamics
,
Dover Publications
,
New York
.
17.
Yang
,
W.
, and
Liu
,
B.
,
2020
, “
Effects of Magnetization Relaxation in Ferrofluid Film Flows Under a Uniform Magnetic Field
,”
Phys. Fluids
,
32
(
6
), p.
062003
.10.1063/5.0011655
18.
Kose
,
A. R.
,
Fischer
,
B.
,
Mao
,
L.
, and
Koser
,
H.
,
2009
, “
Label-Free Cellular Manipulation and Sorting Via Biocompatible Ferrofluids
,”
Proc. Natl. Acad. Sci.
,
106
(
51
), pp.
21478
21483
.10.1073/pnas.0912138106
19.
Casula
,
M. F.
,
Corrias
,
A.
,
Arosio
,
P.
,
Lascialfari
,
A.
,
Sen
,
T.
,
Floris
,
P.
, and
Bruce
,
I. J.
,
2011
, “
Design of Water-Based Ferrofluids as Contrast Agents for Magnetic Resonance Imaging
,”
J. Colloid Interface Sci.
,
357
(
1
), pp.
50
55
.10.1016/j.jcis.2011.01.088
20.
Ghadiri
,
M.
,
Sardarabadi
,
M.
,
Pasandideh-Fard
,
M.
, and
Moghadam
,
A. J.
,
2015
, “
Experimental Investigation of a Pvt System Performance Using Nano Ferrofluids
,”
Energy Convers. Manage
,
103
, pp.
468
476
.10.1016/j.enconman.2015.06.077
21.
Yang
,
X.
,
Sun
,
P.
,
Chen
,
F.
,
Hao
,
F.
,
Li
,
D.
, and
Thomas
,
P. J.
,
2019
, “
Numerical and Experimental Studies of a Novel Converging Stepped Ferrofluid Seal
,”
IEEE Trans. Magn.
,
55
(
3
), pp.
1
6
.10.1109/TMAG.2019.2892358
22.
Yang
,
W.
, and
Liu
,
B.
,
2018
, “
Magnetic Levitation Force of Composite Magnets in a Ferrofluid Damper
,”
Smart Mater. Struct.
,
27
(
11
), p.
115009
.10.1088/1361-665X/aae2f3
23.
Yang
,
W.
,
Wang
,
P.
,
Hao
,
R.
, and
Ma
,
B.
,
2017
, “
Experimental Verification of Radial Magnetic Levitation Force on the Cylindrical Magnets in Ferrofluid Dampers
,”
J. Magn. Magn. Mater.
,
426
, pp.
334
339
.10.1016/j.jmmm.2016.11.099
24.
Ke
,
H.
,
Huang
,
W.
, and
Wang
,
X.
,
2016
, “
Controlling Lubricant Migration Using Ferrofluids
,”
Tribol. Int.
,
93
, pp.
318
323
.10.1016/j.triboint.2015.09.038
25.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2014
, “
Effect of a Rotating Cylinder in Forced Convection of Ferrofluid Over a Backward Facing Step
,”
Int. J. Heat Mass Transfer
,
71
, pp.
142
148
.10.1016/j.ijheatmasstransfer.2013.12.042
26.
Hussain
,
S.
, and
Ahmed
,
S. E.
,
2019
, “
Unsteady MHD Forced Convection Over a Backward Facing Step Including a Rotating Cylinder Utilizing Fe3O4-Water Ferrofluid
,”
J. Magn. Magn. Mater.
,
484
, pp.
356
366
.10.1016/j.jmmm.2019.04.040
27.
Selimefendigil
,
F.
,
Öztop
,
H. F.
, and
Chamkha
,
A. J.
,
2019
, “
Mixed Convection of Pulsating Ferrofluid Flow Over a Backward-Facing Step
,”
Iran J. Sci. Technol. Trans. Mech. Eng.
,
43
(
4
), pp.
593
612
.10.1007/s40997-018-0238-x
28.
Manh
,
T. D.
,
Abazari
,
A. M.
,
Gerdroodbary
,
M.
,
Nam
,
N. D.
,
Moradi
,
R.
, and
Babazadeh
,
H.
,
2021
, “
Computational Simulation of Variable Magnetic Force on Heat Characteristics of Backward–Facing Step Flow
,”
J. Therm. Anal. Calorim.
,
144
(
4
), pp.
1585
1596
.10.1007/s10973-020-09608-9
29.
Alegretti
,
C. F.
, and
Gontijo
,
R. G.
,
2020
, “
New Insights on Boundary Layer Control Using Magnetic Fluids: A Numerical Study
,”
J. Magn. Magn. Mater.
,
514
, p.
167133
.10.1016/j.jmmm.2020.167133
30.
Erturk
,
E.
,
2008
, “
Numerical Solutions of 2-D Steady Incompressible Flow Over a Backward-Facing Step—Part I: High Reynolds Number Solutions
,”
Comput. Fluids
,
37
(
6
), pp.
633
655
.10.1016/j.compfluid.2007.09.003
31.
Odenbach
,
S.
, and
Müller
,
H. W.
,
2002
, “
Stationary Off-Equilibrium Magnetization in Ferrofluids Under Rotational and Elongational Flow
,”
Phys. Rev. Lett.
,
89
(
3
), p.
037202
.10.1103/PhysRevLett.89.037202
32.
Morozov
,
K. I.
, and
Shliomis
,
M. I.
,
2004
, “
Ferrofluids: Flexibility of Magnetic Particle Chains
,”
J. Phys. D Condens. Matter
,
16
, p.
3807
.10.1088/0953-8984/16/23/001
33.
Odenbach
,
S. F.
,
2002
, Ferrofluids,
Magnetically Controllable Fluids and Their Applications
,
Springer
, Berlin.
34.
Patel
,
R.
,
Upadhyay
,
R. V.
, and
Mehta
,
R. V.
,
2003
, “
Viscosity Measurements of a Ferrofluid: Comparison With Various Hydrodynamic Equations
,”
J. Colloid Interface Sci.
,
263
(
2
), pp.
661
664
.10.1016/S0021-9797(03)00325-4
35.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Schönung
,
B.
,
1983
, “
Experimental and Theoretical Investigation of Backward-Facing Step Flow
,”
J. Fluid Mech.
,
127
(
1
), pp.
473
496
.10.1017/S0022112083002839
36.
Biswas
,
G.
,
Breuer
,
M.
, and
Durst
,
F.
,
2004
, “
Backward-Facing Step Flows for Various Expansion Ratios at Low and Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
362
374
.10.1115/1.1760532
37.
Rinaldi
,
C.
,
Chaves
,
A.
,
Elborai
,
S.
,
He
,
X.
, and
Zahn
,
M.
,
2005
, “
Magnetic Fluid Rheology and Flows
,”
Curr. Opin. Colloid Interface Sci.
,
10
(
3–4
), pp.
141
157
.10.1016/j.cocis.2005.07.004
38.
Korlie
,
M. S.
,
Mukherjee
,
A.
,
Nita
,
B. G.
,
Stevens
,
J. G.
,
Trubatch
,
A. D.
, and
Yecko
,
P.
,
2008
, “
Analysis of Flows of Ferrofluids Under Simple Shear
,”
Magnetohydrodynamics
,
44
(
1
), pp.
51
59
.10.22364/mhd.44.1.8
39.
Ghosh
,
D.
, and
Das
,
P. K.
,
2019
, “
Control of Flow and Suppression of Separation for Couette-Poiseuille Hydrodynamics of Ferrofluids Using Tunable Magnetic Fields
,”
Phys. Fluids
,
31
(
8
), p.
083609
.10.1063/1.5111577
40.
Robertson
,
E.
,
Choudhury
,
V.
,
Bhushan
,
S.
, and
Walters
,
D. K.
,
2015
, “
Validation of OpenFOAM Numerical Methods and Turbulence Models for Incompressible Bluff Body Flows
,”
Comput. Fluids
,
123
, pp.
122
145
.10.1016/j.compfluid.2015.09.010
41.
Yang
,
W. M.
,
2021
, “
On the Boundary Conditions of Magnetic Field in OpenFOAM and a Magnetic Field Solver for Multi-Region Applications
,”
Comput. Phys. Commun.
,
263
, p.
107883
.10.1016/j.cpc.2021.107883
You do not currently have access to this content.