Abstract

Turbulent flows around a square cylinder and a rectangular cylinder with a streamwise aspect ratio (length-to-height) of 5 in a uniform flow were investigated using time-resolved particle image velocimetry (TR-PIV). The Reynolds number based on the cylinder height and oncoming flow velocity was 16,200. Similarities and differences in the flow dynamics over the cylinders and in the near-wake region were examined in terms of the mean flow, drag coefficient, Reynolds stresses, and triple velocity correlations. The budget of turbulent kinetic energy (TKE) as well as temporal and spectral analyses was also performed. The results show that the primary, secondary, and wake vortexes are smaller for the square cylinder compared to the large aspect ratio cylinder. There are regions of elevated Reynolds stresses and triple velocity correlations along the mean separating streamlines, and the magnitudes of these statistics are an order of magnitude higher over the square cylinder compared to the large aspect ratio cylinder. The topology of the triple velocity correlations shows low-speed ejection and high-speed sweep events, respectively, transporting instantaneous Reynolds normal stresses away from the mean separating streamline into the freestream and toward the cylinder surface, regardless of aspect ratio. Near the leading and trailing edges of both cylinders, regions of negative turbulence production are observed, and the dominant components contributing to this occurrence are discussed. Temporal autocorrelation coefficients of the streamwise and vertical velocity fluctuations show a periodic trend, with a periodicity that is directly linked to the Kármán shedding frequency and its second harmonic.

References

1.
Ota
,
T.
, and
Kon
,
N.
,
1980
, “
Turbulent Transfer of Momentum and Heat in a Separated and Reattached Flow Over a Blunt Flat Plate
,”
ASME J. Heat Transfer-Trans. ASME
,
102
(
4
), pp.
749
754
.10.1115/1.3244384
2.
Sparrow
,
E. M.
, and
Cur
,
N.
,
1982
, “
Turbulent Heat Transfer in a Symmetrically or Asymmetrically Heated Flat Rectangular Duct With Flow Separation at Inlet
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
1
), pp.
82
89
.10.1115/1.3245072
3.
Liu
,
J.
,
Hussain
,
S.
,
Wang
,
J.
,
Wang
,
L.
,
Gongnan
,
X.
, and
Sunden
,
B.
,
2018
, “
Heat Transfer Enhancement and Turbulent Flow in a High Aspect Ratio Channel (4:1) With Ribs of Various Truncation Types and Arrangements
,”
Int. J. Therm. Sci.
,
123
, pp.
99
116
.10.1016/j.ijthermalsci.2017.09.013
4.
Cermak
,
J. E.
,
1976
, “
Aerodynamics of Buildings
,”
Annu. Rev. Fluid Mech.
,
8
(
1
), pp.
75
106
.10.1146/annurev.fl.08.010176.000451
5.
Farabee
,
T. M.
, and
Casarella
,
M. J.
,
1986
, “
Measurements of Fluctuating Wall Pressure for Separated/Reattached Boundary Layer Flows
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
108
(
3
), pp.
301
307
.10.1115/1.3269343
6.
Graziani
,
A.
,
Kerherve
,
F.
,
Martinuzzi
,
R. J.
, and
Keirsbulck
,
L.
,
2018
, “
Dynamics of the Recirculating Areas of a Forward-Facing Step
,”
Exp. Fluids
,
59
(
10
), p.
154
.10.1007/s00348-018-2608-y
7.
Fang
,
X.
, and
Tachie
,
M. F.
,
2019
, “
On the Unsteady Characteristics of Turbulent Separations Over a Forward-Backward-Facing Step
,”
J. Fluid Mech.
,
863
, pp.
994
1030
.10.1017/jfm.2018.962
8.
Heath
,
C.
,
Fang
,
X.
, and
Tachie
,
M. F.
,
2021
, “
Streamwise Aspect Ratio Effects on Turbulent Flow Separations Induced by Forward-Backward-Facing Steps
,”
ASME J. Fluids Eng.
,
143
(
2
), p.
021305
.10.1115/1.4048686
9.
Kumahor
,
S.
,
Fang
,
X.
, and
Tachie
,
M. F.
,
2021
, “
The Effects of Upstream Wall Roughness on the Spatio-Temporal Characteristics of Flow Separations Induced by a Forward-Facing Step
,”
ASME J. Fluids Eng.
,
143
(
7
), p.
071301
.10.1115/1.4050206
10.
Okajima
,
A.
,
1982
, “
Strouhal Numbers of Rectangular Cylinders
,”
J. Fluid Mech.
,
123
, pp.
379
398
.10.1017/S0022112082003115
11.
Kiya
,
M.
, and
Sasaki
,
K.
,
1983
, “
Structure of a Turbulent Separation Bubble
,”
J. Fluid Mech.
,
137
, pp.
83
113
.10.1017/S002211208300230X
12.
Bearman
,
P. W.
, and
Morel
,
T.
,
1983
, “
Effect of Free Stream Turbulence on the Flow Around Bluff Bodies
,”
Prog. Aerosp. Sci.
,
20
(
2–3
), pp.
97
123
.10.1016/0376-0421(83)90002-7
13.
Durao
,
D. F. G.
,
Heitor
,
M. V.
, and
Pereira
,
J. C. F.
,
1988
, “
Measurements of Turbulent and Periodic Flows Around a Square Cross-Section Cylinder
,”
Exp. Fluids
,
6
(
5
), pp.
298
304
.10.1007/BF00538820
14.
Lyn
,
D. A.
,
Einav
,
S.
,
Rodi
,
W.
, and
Park
,
J. H.
,
1995
, “
A laser-Doppler Velocimetry Study of Ensemble-Averaged Characteristics of the Turbulent Near Wake of a Square Cylinder
,”
J. Fluids Mech.
,
304
, pp.
285
319
.10.1017/S0022112095004435
15.
Franke
,
R.
,
Rodi
,
W.
, and
Schönung
,
B.
,
1990
, “
Numerical Calculation of Laminar Vortex-Shedding Flow Past Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
35
, pp.
237
257
.10.1016/0167-6105(90)90219-3
16.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders Volume 1: Fundamentals
, Vol.
1
,
Oxford University Press
, Oxford, UK.
17.
Yao
,
J.
,
Lou
,
W.
,
Shen
,
G.
,
Guo
,
Y.
, and
Xing
,
Y.
,
2019
, “
Influence of Inflow Turbulence on the Flow Characteristics Around a Circular Cylinder
,”
Appl. Sci.
,
9
(
17
), p.
3595
.10.3390/app9173595
18.
Achenbach
,
E.
,
1968
, “
Distribution of Local Pressure and Skin Friction Around a Circular Cylinder in Cross-Flow Up to Re = 5 × 106
,”
J. Fluid Mech.
,
34
(
4
), pp.
625
639
.10.1017/S0022112068002120
19.
Shimada
,
K.
, and
Ishihara
,
T.
,
2002
, “
Application of a Modified k-ε Model to the Prediction of Aerodynamic Characteristics of Rectangular Cross-Section Cylinders
,”
J. Fluids Struct.
,
16
(
4
), pp.
465
485
.10.1006/jfls.2001.0433
20.
Bruno
,
L.
,
Salvetti
,
M. V.
, and
Ricciardelli
,
F.
,
2014
, “
Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder: An Overview After the First Four Years of Activity
,”
J. Wind Eng. Ind. Aerodyn.
,
126
, pp.
87
106
.10.1016/j.jweia.2014.01.005
21.
Moore
,
D. M.
,
Letchford
,
C. W.
, and
Amitay
,
M.
,
2019
, “
Energetic Scales in a Bluff Body Shear Layer
,”
J. Fluid Mech.
,
875
, pp.
543
575
.10.1017/jfm.2019.480
22.
Bosch
,
G.
, and
Rodi
,
W.
,
1998
, “
Simulation of Vortex Shedding Past a Square Cylinder With Different Turbulence Models
,”
Int. J. Numer. Methods Fluids
,
28
(
4
), pp.
601
616
.10.1002/(SICI)1097-0363(19980930)28:4<601::AID-FLD732>3.0.CO;2-F
23.
Trias
,
F. X.
,
Gorobets
,
A.
, and
Oliva
,
A.
,
2015
, “
Turbulent Flow Around a Square Cylinder at Reynolds Number 22,000: A DNS Study
,”
Comput. Fluids
,
123
, pp.
87
98
.10.1016/j.compfluid.2015.09.013
24.
Portela
,
F. A.
,
Papadakis
,
G.
, and
Vassilicos
,
J. C.
,
2017
, “
The Turbulence Cascade in the Near Wake of a Square Prism
,”
J. Fluid Mech.
,
825
, pp.
315
352
.10.1017/jfm.2017.390
25.
Schewe
,
G.
,
2013
, “
Reynolds-Number-Effects in Flow Around a Rectangular Cylinder With Aspect Ratio 1:5
,”
J. Fluids Struct.
,
39
, pp.
15
26
.10.1016/j.jfluidstructs.2013.02.013
26.
Cimarelli
,
A.
,
Leonforte
,
A.
, and
Angeli
,
D.
,
2018
, “
On the Structure of Self-Sustaining Cycle in Separating and Reattaching Flows
,”
J. Fluid Mech.
,
857
, pp.
907
936
.10.1017/jfm.2018.772
27.
Derakhshandeh
,
J. F.
, and
Alam
,
M. M.
,
2019
, “
A Review of Bluff Body Wakes
,”
Ocean Eng.
,
182
, pp.
475
488
.10.1016/j.oceaneng.2019.04.093
28.
Minguez
,
M.
,
Brun
,
C.
,
Pasquetti
,
R.
, and
Serre
,
E.
,
2011
, “
Experimental and High-Order LES Analysis of the Flow in Near-Wall Region of a Square Cylinder
,”
Int. J. Heat Fluid Flow
,
32
(
3
), pp.
558
566
.10.1016/j.ijheatfluidflow.2011.03.009
29.
Nakagawa
,
S.
,
Nitta
,
K.
, and
Senda
,
M.
,
1999
, “
An Experimental Study on Unsteady Turbulent Near Wake of a Rectangular Cylinder in Channel Flow
,”
Exp. Fluids
,
27
(
3
), pp.
284
294
.10.1007/s003480050353
30.
Fang
,
X.
, and
Tachie
,
M. F.
,
2019
, “
Flows Over Surface-Mounted Bluff Bodies With Different Spanwise Widths Submerged in a Deep Turbulent Boundary Layer
,”
J. Fluid Mech.
,
877
, pp.
717
758
.10.1017/jfm.2019.617
31.
Samimy
,
M.
, and
Lele
,
S. K.
,
1991
, “
Motion of Particles With Inertia in a Compressible Free Shear Layer
,”
Phys. Fluids
,
3
(
8
), pp.
1915
1923
.10.1063/1.857921
32.
George
,
W. K.
,
2013
,
Lectures in Turbulence for the 21st Century
,
Chalmers University of Technology
,
Gothenburg, Sweden
.
33.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.10.1088/0957-0233/27/8/084006
34.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2010
,
Random Data: Analysis and Measurement Procedures
, 4th ed.,
Wiley
,
Hoboken, NJ
.
35.
Simpson
,
R. L.
,
1981
, “
A Review of Some Phenomena in Turbulent Flow Separation
,”
ASME J. Fluids Eng.
,
103
(
4
), pp.
520
533
.10.1115/1.3241761
36.
Djilali
,
N.
, and
Gartshore
,
I. S.
,
1991
, “
Turbulent Flow Around a Bluff Rectangular Plate. Part I: Experimental Investigation
,”
ASME J. Fluids Eng.
,
113
(
1
), pp.
51
59
.10.1115/1.2926496
37.
Cimarelli
,
A.
,
Leonforte
,
A.
, and
Angeli
,
D.
,
2018
, “
Direct Numerical Simulation of the Flow Around a Rectangular Cylinder at a Moderately High Reynolds Number
,”
J. Wind Eng. Ind. Aerodyn.
,
174
, pp.
39
49
.10.1016/j.jweia.2017.12.020
38.
Fang
,
X.
, and
Tachie
,
M. F.
,
2020
, “
Spatio-Temporal Dynamics of Flow Separation Induced by a Forward-Facing Step Submerged in a Thick Turbulent Boundary Layer
,”
J. Fluid Mech.
,
892
, p.
A40
.10.1017/jfm.2020.209
39.
Lyn
,
D. A.
, and
Rodi
,
W.
,
1994
, “
The Flapping Shear Layer Formed by Flow Separation From the Forward Corner of a Square Cylinder
,”
J. Fluid Mech.
,
267
, pp.
353
376
.10.1017/S0022112094001217
40.
Antonia
,
R. A.
, and
Rajagopalan
,
S.
,
1990
, “
Determination of Drag of a Circular Cylinder
,”
Am. Inst. Aeronaut. Astronaut.
,
28
(
10
), pp.
1833
1834
.10.2514/3.10485
41.
Mohebi
,
M.
,
Plessix
,
P.
,
Martinuzzi
,
R. J.
, and
Wood
,
D. H.
,
2017
, “
Effect of Thickness-to-Chord Ratio on the Wake of Two-Dimensional Rectangular Cylinders
,”
Phys. Rev. Fluids
,
2
(
6
), p.
064702
.10.1103/PhysRevFluids.2.064702
42.
Hu
,
J. C.
,
Zhou
,
Y.
, and
Dalton
,
C.
,
2006
, “
Effects of the Corner Radius on the Near Wake of a Square Prism
,”
Exp. Fluids
,
40
(
1
), pp.
106
118
.10.1007/s00348-005-0052-2
43.
Knisely
,
C. W.
,
1990
, “
Strouhal Numbers of Rectangular Cylinders at Incidence: A Review and New Data
,”
J. Fluids Struct.
,
4
(
4
), pp.
371
393
.10.1016/0889-9746(90)90137-T
44.
Saha
,
A. K.
,
Biswas
,
G.
, and
Muralidhar
,
K.
,
2001
, “
Two-Dimensional Study of the Turbulent Wake Behind a Square Cylinder Subject to Uniform Shear
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
595
603
.10.1115/1.1383549
45.
Norberg
,
C.
,
1993
, “
Flow Around Rectangular Cylinders: Pressure Forces and Wake Frequencies
,”
J. Wind Eng. Ind. Aerodyn.
,
49
(
1–3
), pp.
187
196
.10.1016/0167-6105(93)90014-F
46.
Xu
,
D.
, and
Chen
,
J.
,
2013
, “
Accurate Estimate of Turbulent Dissipation Rate Using PIV Data
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
662
672
.10.1016/j.expthermflusci.2012.09.006
47.
George
,
W. K.
, and
Hussein
,
H. J.
,
1991
, “
Locally Axisymmetric Turbulence
,”
J. Fluid Mech.
,
233
, pp.
1
23
.10.1017/S0022112091000368
48.
Cimarelli
,
A.
,
Leonforte
,
A.
,
De Angelis
,
E.
,
Crivellini
,
A.
, and
Angeli
,
D.
,
2019
, “
On Negative Turbulence Production Phenomena in the Shear Layer of Separating and Reattaching Flows
,”
Phys. Lett. A
,
383
(
10
), pp.
1019
1026
.10.1016/j.physleta.2018.12.026
49.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
50.
Ong
,
L.
, and
Wallace
,
J.
,
1996
, “
The Velocity Field of the Turbulent Very Near Wake of a Circular Cylinder
,”
Exp. Fluids
,
20
(
6
), pp.
441
453
.10.1007/BF00189383
51.
Castro
,
I. P.
,
1985
, “
Time-Domain Measurements in Separated Flows
,”
J. Fluid Mech.
,
150
, pp.
183
201
.10.1017/S002211208500009X
You do not currently have access to this content.