Abstract

Theoretical analysis of the entrance hydrodynamics of microchannels is an important design aspect in connection with the development of microfluidic devices. In this paper, pressure-driven fluid flow in the entrance region of two infinite hydrophobic parallel plates with dissimilar slip-velocities is analytically modeled. The linearized momentum equation is solved by applying the Navier-slip model at the boundaries to achieve the most generalized two-dimensional form. The velocity profile is obtained by combining the developed and developing velocities, which is estimated by invoking the separation of variable method. It is observed that the velocity profile is asymmetric, and the shear-free region can be shifted from the geometrical central line by altering the wall hydrophobicity. Moreover, the zero shear zone is transferred more toward the surface having high hydrophobicity. The expression for wall shear stress is obtained analytically using Newton's law of viscosity. Moreover, the boundary layer growth from the upper and lower walls is found to be entirely different, and they merge at the entrance length and are noticed to be offsetted from the geometric centerline. The effect of slip-length on the entrance length is analyzed, and an empirical correlation is deduced.

References

1.
Nguyen
,
N.-T.
,
2006
,
Fundamentals and Applications of Microfluidics
,
Artech House
,
Norwood, MA
.
2.
Chakraborty
,
S.
, and
Anand
,
K. D.
,
2008
, “
Implications of Hydrophobic Interactions and Consequent Apparent Slip Phenomenon on the Entrance Region Transport of Liquids Through Microchannels
,”
Phys. Fluids
,
20
(
4
), p.
043602
.10.1063/1.2904988
3.
Bayraktar
,
T.
, and
Pidugu
,
S. B.
,
2006
, “
Characterization of Liquid Flows in Microfluidic Systems
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
815
824
.10.1016/j.ijheatmasstransfer.2005.11.007
4.
Karniadakis
,
G. E.
, and
Beşkök
,
A.
,
2002
,
Micro Flows: Fundamentals and Simulation
,
Springer
, New York.
5.
Arun
,
M.
,
Dilip
,
D.
, and
Ranjith
,
S. K.
,
2021
, “
Effect of Interface Curvature on Isothermal Heat Transfer in a Hydrophobic Microchannel With Transverse Ribs and Cavities
,”
Int. J. Therm. Sci.
,
167
, p.
107014
.10.1016/j.ijthermalsci.2021.107014
6.
Joseph
,
M.
,
Mathew
,
G.
,
Krishnaraj
,
G.
,
Dilip
,
D.
, and
Ranjith
,
S. K.
,
2020
, “
Numerical Simulation of Liquid–Gas Interface Formation in Long Superhydrophobic Microchannels With Transverse Ribs and Grooves
,”
Exp. Comput. Multiphase Flow
,
2
(
3
), pp.
162
173
.10.1007/s42757-019-0043-9
7.
Gong
,
W.
,
Shen
,
J.
,
Dai
,
W.
,
Deng
,
Z.
,
Dong
,
X.
, and
Gong
,
M.
,
2020
, “
Effects of Slip Length and Hydraulic Diameter on Hydraulic Entrance Length of Microchannels With Superhydrophobic Surfaces
,”
Front. Energy
,
14
(
1
), pp.
127
138
.10.1007/s11708-020-0661-8
8.
Muzychka
,
Y. S.
, and
Enright
,
R.
,
2013
, “
Numerical Simulation and Modeling of Laminar Developing Flow in Channels and Tubes With Slip
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
101204
.10.1115/1.4024808
9.
Sinton
,
D.
,
2004
, “
Microscale Flow Visualization
,”
Microfluid. Nanofluid.
,
1
(
1
), pp.
2
21
.10.1007/s10404-004-0009-4
10.
Thompson
,
B. R.
,
Maynes
,
D.
, and
Webb
,
B.
,
2003
, “
Characterization of the Hydrodynamically Developing Flow in a Microtube Using Molecular Tagging Velocimetry
,”
ASME
Paper No. ICMM2003-1025.10.1115/ICMM2003-1025
11.
Campbell
,
L. A.
, and
Kandlikar
,
S. G.
,
2004
, “
Effect of Entrance Condition on Frictional Losses and Transition to Turbulence in Conventional and Minichannel Flows
,” ASME 2004 2nd International Conference on Microchannels and Minichannels, Rochester, New York, pp.
229
235
.
12.
Ahmad
,
T.
,
Hassan
,
I.
, and
Muwanga
,
R.
,
2007
, “
Entrance Length Characteristics in Microchannels Using Micro-Particle Image Velocimetry
,”
ASME
Paper No. ICNMM2007-30139.10.1115/ICNMM2007-30139
13.
Ahmad
,
T.
, and
Hassan
,
I.
,
2010
, “
Experimental Analysis of Microchannel Entrance Length Characteristics Using Microparticle Image Velocimetry
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041102
.10.1115/1.4001292
14.
Chen
,
R.
,
1973
, “
Flow in the Entrance Region at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
95
(
1
), pp.
153
158
.10.1115/1.3446948
15.
Mohanty
,
A.
, and
Das
,
R.
,
1982
, “
Laminar Flow in the Entrance Region of a Parallel Plate Channel
,”
AIChE J.
,
28
(
5
), pp.
830
833
.10.1002/aic.690280520
16.
Al-Ali
,
H. H.
, and
Sami Selim
,
M.
,
1992
, “
Simultaneous Development of Velocity and Temperature Profiles in the Entrance Region of a Parallel Plate Channel: Laminar Flow With Uniform Wall Heat Flux
,”
Chem. Eng. Commun.
,
112
(
1
), pp.
1
19
.10.1080/00986449208935988
17.
Vimmr
,
J.
,
Klášterka
,
H.
, and
Hajžman
,
M.
,
2012
, “
Analytical Solution of Gaseous Slip Flow Between Two Parallel Plates Described by the Oseen Equation
,”
Math. Comput. Simul.
,
82
(
10
), pp.
1832
1840
.10.1016/j.matcom.2012.04.002
18.
Sparrow
,
E.
,
Lin
,
S.
, and
Lundgren
,
T.
,
1964
, “
Flow Development in the Hydrodynamic Entrance Region of Tubes and Ducts
,”
Phys. Fluids
,
7
(
3
), pp.
338
347
.10.1063/1.1711204
19.
Das
,
S. K.
, and
Tahmouresi
,
F.
,
2016
, “
Analytical Solution of Fully Developed Gaseous Slip Flow in Elliptic Microchannel
,”
Int. J. Adv. Appl. Math. Mech.
,
3
(
3
), pp.
1
15
.http://www.ijaamm.com/uploads/2/1/4/8/21481830/v3n3p1_1_15.pdf
20.
Duan
,
Z.
, and
Muzychka
,
Y.
,
2010
, “
Slip Flow in the Hydrodynamic Entrance Region of Circular and Noncircular Microchannels
,”
ASME J. Fluids Eng.
,
132
(
1
), p.
011201
.10.1115/1.4000692
21.
Durst
,
F.
,
Ray
,
S.
,
Nsal
,
B.
, and
Bayoumi
,
O. A.
,
2005
, “
The Development Lengths of Laminar Pipe and Channel Flows
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1154
1160
.10.1115/1.2063088
22.
Kountouriotis
,
Z.
,
Philippou
,
M.
, and
Georgiou
,
G. C.
,
2016
, “
Development Lengths in Newtonian Poiseuille Flows With Wall Slip
,”
Appl. Math. Comput.
,
291
, pp.
98
114
.10.1016/j.amc.2016.06.041
23.
Yu
,
K. H.
,
Lee
,
H. W.
,
Teoh
,
Y. H.
, and
Ismail
,
M. A.
,
2021
, “
Developing Flow of Newtonian Fluids Over Superhydrophobic Transverse Grooves in Circular Tube
,”
J. Mech. Sci. Technol.
,
35
(
1
), pp.
199
207
.10.1007/s12206-020-1219-8
24.
Duan
,
Z.
, and
He
,
B.
,
2018
, “
Further Study on Second-Order Slip Flow Models in Channels of Various Cross Sections
,”
Heat Transfer Eng.
,
39
(
11
), pp.
933
945
.10.1080/01457632.2017.1357702
25.
Galvis
,
E.
,
Yarusevych
,
S.
, and
Culham
,
J.
,
2012
, “
Incompressible Laminar Developing Flow in Microchannels
,”
ASME J. Fluids Eng.
,
134
(
1
), p.
014503
.10.1115/1.4005736
26.
Ranjith
,
S. K.
,
Patnaik
,
B. S. V.
, and
Vedantam
,
S.
,
2013
, “
Hydrodynamics of the Developing Region in Hydrophobic Microchannels: A Dissipative Particle Dynamics Study
,”
Phys. Rev. E
,
87
(
3
), p.
033303
.10.1103/PhysRevE.87.033303
27.
Li
,
H.
,
Li
,
Y.
,
Huang
,
B.
, and
Xu
,
T.
,
2019
, “
Flow Characteristics of the Entrance Region With Roughness Effect Within Rectangular Microchannels
,”
Micromachines
,
11
(
1
), p.
30
.10.3390/mi11010030
28.
Ferreira
,
G.
,
Sucena
,
A.
,
Ferrás
,
L. L.
,
Pinho
,
F. T.
, and
Afonso
,
A. M.
,
2021
, “
Hydrodynamic Entrance Length for Laminar Flow in Microchannels With Rectangular Cross Section
,”
Fluids
,
6
(
7
), p.
240
.10.3390/fluids6070240
29.
Shah
,
R. K.
, and
London
,
A. L.
,
2014
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
, New York.
30.
Cengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2006
,
Fluid Mechanics: Fundamentals and Applications
,
McGraw-Hill
, New York.
31.
Lauga
,
E.
,
Brenner
,
M. P.
, and
Stone
,
H. A.
,
2007
, “
Microfluidics: The No-Slip Boundary Condition
,”
Handbook of Experimental Fluid Dynamics
, Springer-Verlag Berlin Heidelberg, pp.
1219
1240
.
32.
Granick
,
S.
,
Zhu
,
Y.
, and
Lee
,
H.
,
2003
, “
Slippery Questions About Complex Fluids Flowing Past Solids
,”
Nat. Mater.
,
2
(
4
), pp.
221
227
.10.1038/nmat854
33.
Choi
,
C.-H.
,
Ulmanella
,
U.
,
Kim
,
J.
,
Ho
,
C.-M.
, and
Kim
,
C.-J.
,
2006
, “
Effective Slip and Friction Reduction in Nanograted Superhydrophobic Microchannels
,”
Phys. Fluids
,
18
(
8
), p.
087105
.10.1063/1.2337669
34.
Rothstein
,
J.
,
2010
, “
Slip on Superhydrophobic Surfaces
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
89
109
.10.1146/annurev-fluid-121108-145558
35.
Navier
,
C. L. M. H.
,
1823
, “
Memoire sur les lois du mouvement des fluides
,”
Mem. Acad. R. Sci. Inst. Fr.
,
6
(
1823
), pp.
389
440
.
36.
Duan
,
Z.
, and
Muzychka
,
Y.
,
2007
, “
Slip Flow in Non-Circular Microchannels
,”
Microfluid. Nanofluid.
,
3
(
4
), pp.
473
484
.10.1007/s10404-006-0141-4
37.
Kashaninejad
,
N.
,
Chan
,
W.
, and
Nguyen
,
N.-T.
,
2013
, “
Analytical Modeling of Slip Flow in Parallel-Plate Microchannels
,”
Micro Nanosyst.
,
5
(
4
), pp.
245
252
.10.2174/187640290504131127120423
38.
Ranjith
,
S. K.
,
Patnaik
,
B. S. V.
, and
Vedantam
,
S.
,
2014
, “
Transport of DNA in Hydrophobic Microchannels: A Dissipative Particle Dynamics Simulation
,”
Soft Matter
,
10
(
23
), pp.
4184
4191
.10.1039/c3sm53035c
39.
Ranjith
,
S. K.
,
Vedantam
,
S.
, and
Patnaik
,
B. S. V.
,
2015
, “
Hydrodynamics of Flow Through Microchannels With Hydrophobic Strips
,”
Microfluid. Nanofluid.
,
19
(
3
), pp.
547
556
.10.1007/s10404-015-1580-6
40.
Karamanis
,
G.
,
Hodes
,
M.
,
Kirk
,
T.
, and
Papageorgiou
,
D. T.
,
2017
, “
Solution of the Graetz-Nusselt Problem for Liquid Flow Over Isothermal Parallel Ridges
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
9
), p.
091702
.10.1115/1.4036281
41.
Ramakrishnan
,
V.
,
Mushthaq
,
R.
,
Roy
,
A.
, and
Vengadesan
,
S.
,
2021
, “
Stability of Two-Layer Flows Past Slippery Surfaces. I. Horizontal Channels
,”
Phys. Fluids
,
33
(
8
), p.
084112
.10.1063/5.0050256
42.
Pan
,
W.
,
Pivkin
,
I. V.
, and
Karniadakis
,
G. E.
,
2008
, “
Single-Particle Hydrodynamics in DPD: A New Formulation
,”
Europhys. Lett.
,
84
(
1
), p.
10012
.10.1209/0295-5075/84/10012
43.
Hoque
,
S. Z.
,
Anand
,
D. V.
, and
Patnaik
,
B.
,
2018
, “
The Dynamics of a Healthy and Infected Red Blood Cell in Flow Through Constricted Channels: A DPD Simulation
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
9
), p.
e3105
.10.1002/cnm.3105
44.
Anand
,
D. V.
,
Patnaik
,
B.
, and
Vedantam
,
S.
,
2017
, “
A Dissipative Particle Dynamics Study of a Flexible Filament in Confined Shear Flow
,”
Soft Matter
,
13
(
7
), pp.
1472
1480
.10.1039/C6SM02490D
45.
Anand
,
D. V.
,
Vedantam
,
S.
, and
Patnaik
,
B.
,
2016
, “
Dissipative Particle Dynamics Simulation of Shear Flow in a Microchannel With a Deformable Membrane
,”
Microfluid. Nanofluid.
,
20
(
12
), p.
161
.10.1007/s10404-016-1819-x
46.
Ranjith
,
S. K.
,
Patnaik
,
B. S. V.
, and
Vedantam
,
S.
,
2013
, “
No-Slip Boundary Condition in Finite-Size Dissipative Particle Dynamics
,”
J. Comput. Phys.
,
232
(
1
), pp.
174
188
.10.1016/j.jcp.2012.07.046
47.
Ranjith
,
S. K.
,
2015
, “
Mesoscopic Simulation of Single DNA Dynamics in Rotational Flows
,”
Eur. Phys. J. E
,
38
(
8
), p.
89
.10.1140/epje/i2015-15089-0
48.
Groot
,
R.
, and
Warren
,
P.
,
1997
, “
Dissipative Particle Dynamics: Bridging the Gap Between Atomistic and Mesoscopic Simulation
,”
J. Chem. Phys.
,
107
(
11
), pp.
4423
4435
.10.1063/1.474784
You do not currently have access to this content.