Abstract

Wiping jet impingement pressure is important in controlling the coating mass (thickness) and influencing the smoothness of the thin metallic coating produced in continuous galvanizing lines (CGLs). However, the fluctuation of the impingement pressure profile that directly impacts the coating smoothness has not been adequately understood. To study key features of the impingement pressure fluctuation, the instantaneous impingement pressure profiles obtained from large eddy simulations (LES) were analyzed using proper orthogonal decomposition (POD). Dominant fluctuation modes of pressure profiles can be differentiated based on the energy contents of the modes corresponding to different jet types, namely, mixing, nonmixing, and transitional mixing jet. The dominant modes of mixing jets in the wiping region contain comparable strength of all modes (flapping, pulsing, and out-of-phase multipulsing). Nonmixing jets do not show discernable fluctuation modes, and transitional mixing jets show pulsing and flapping modes only. Additionally, instantaneous maximum pressure gradients and their locations were determined from the reduced-order reconstructions of the pressure profiles. From the analysis, frequency spectra of the magnitude and location fluctuations of the maximum pressure gradients associated with each of the jet types can be clearly distinguished. This is the knowledge that may be helpful for CGL operators in the operation of wiping jets.

References

1.
Myrillas
,
K.
,
Gosset
,
A.
,
Rambaud
,
P.
, and
Buchlin
,
J. M.
,
2009
, “
CFD Simulation of Gas-Jet Wiping Process
,”
Eur. Phys. J.: Spec. Top.
,
166
(
1
), pp.
93
97
.10.1140/epjst/e2009-00885-y
2.
Goodwin
,
F.
, and
Dubois
,
M.
,
2012
, “
Review on Wiping: A Key Process Limiting CGL Productivity
,”
AISTech 2012: Proceedings of the Iron & Steel Technology Conference
,
Atlanta, GA
, May 7-10, Vol.
2
, pp.
1847
1860
.
3.
Ellen
,
C. H.
, and
Tu
,
C. V.
,
1984
, “
An Analysis of Jet Stripping of Liquid Coatings
,”
ASME J. Fluids Eng.
,
106
(
4
), pp.
399
404
.10.1115/1.3243137
4.
Thornton
,
J. A.
, and
Graff
,
H. F.
,
1976
, “
An Analytical Description of the Jet Finishing Process for Hot-Dip Metallic Coatings on Strip
,”
Metall. Trans. B
,
7
(
4
), pp.
607
618
.10.1007/BF02698594
5.
Tuck
,
E. O.
,
1983
, “
Continuous Coating With Gravity and Jet Stripping
,”
Phys. Fluids
,
26
(
9
), p.
2352
.10.1063/1.864438
6.
Elsaadawy
,
E. A.
,
Hanumanth
,
G. S.
,
Balthazaar
,
A. K. S.
,
McDermid
,
J. R.
,
Hrymak
,
A. N.
, and
Forbes
,
J. F.
,
2007
, “
Coating Weight Model for the Continuous Hot-Dip Galvanizing Process
,”
Metall. Mater. Trans. B
,
38
(
3
), pp.
413
424
.10.1007/s11663-007-9037-2
7.
Hocking
,
G. C.
,
Sweatman
,
W. L.
,
Fitt
,
A. D.
, and
Breward
,
C.
,
2011
, “
Deformations During Jet-Stripping in the Galvanizing Process
,”
J. Eng. Math.
,
70
(
1–3
), pp.
297
306
.10.1007/s10665-010-9394-8
8.
Naphade
,
P.
,
Mukhopadhyay
,
A.
, and
Chakrabarti
,
S.
,
2005
, “
Mathematical Modelling of Jet Finishing Process for Hot-Dip Zinc Coatings on Steel Strip
,”
ISIJ Int.
,
45
(
2
), pp.
209
213
.10.2355/isijinternational.45.209
9.
Johnstone
,
A. D.
,
Kosasih
,
B.
,
Phan
,
L. Q.
,
Dixon
,
A.
, and
Renshaw
,
W.
,
2017
, “
Coating Film Evolution Subject to Time Dependent Pressure and Shear Stress Profiles
,”
11th International Conference on Zinc and Zinc Alloy Coated Steel Sheet
,
University of Tokyo
,
Tokyo, Japan
, Nov 12-16, pp.
314
321
.
10.
Mendez
,
M. A.
,
Myrillas
,
K.
,
Gosset
,
A.
, and
Buchlin
,
J. M.
,
2015
, “
A Research Methodology to Study Jet Wiping Processes
,”
11th European Coating Symposium
,
Eindhoven, The Netherlands
, Sep 9–11.
11.
Mendez
,
M. A.
,
Gosset
,
A.
,
Myrillas
,
K.
, and
Buchlin
,
J. M.
,
2017
, “
Numerical Modal Analysis of the Jet Wiping Instability
,”
European Coating Symposium 2017
, Fribourg, Switzerland, Nov. 8–10.https://www.researchgate.net/profile/Miguel-Mendez-4/publication/320895182_Numerical_Modal_Analysis_of_the_Jet_Wiping_Instability/links/5ae95564aca2725dabb53278/Numerical-Modal-Analysis-of-the-Jet-Wiping-Instability.pdf
12.
Johnstone
,
A. D.
,
Kosasih
,
B.
,
Phan
,
L. Q.
,
Dixon
,
A.
, and
Renshaw
,
W.
,
2019
, “
Coating Film Profiles Generated by Fluctuating Location of the Wiping Pressure and Shear Stress
,”
ISIJ Int.
,
59
(
2
), pp.
319
325
.10.2355/isijinternational.ISIJINT-2018-413
13.
Pfeiler
,
C.
,
Eßl
,
W.
,
Reiss
,
G.
,
Riener
,
C. K.
,
Angeli
,
G.
, and
Kharicha
,
A.
,
2017
, “
Investigation of the Gas-Jet Wiping Process—Two-Phase Large Eddy Simulations Elucidate Impingement Dynamics and Wave Formation on Zinc Coatings
,”
Steel Res. Int.
,
88
(
9
), p.
1600507
.10.1002/srin.201600507
14.
Mendez
,
M. A.
,
Balabane
,
M.
, and
Buchlin
,
J. M.
,
2019
, “
Multi-Scale Proper Orthogonal Decomposition of Complex Fluid Flows
,”
J. Fluid Mech.
,
870
, pp.
988
1036
.10.1017/jfm.2019.212
15.
Kostas
,
J.
,
Soria
,
J.
, and
Chong
,
M. S.
,
2005
, “
A Comparison Between Snapshot POD Analysis of PIV Velocity and Vorticity Data
,”
Exp. Fluids
,
38
(
2
), pp.
146
160
.10.1007/s00348-004-0873-4
16.
Charmiyan
,
M.
,
Azimian
,
A. R.
,
Shirani
,
E.
,
Aloui
,
F.
,
Degouet
,
C.
, and
Michaelis
,
D.
,
2017
, “
3D Tomographic PIV, POD and Vortex Identification of Turbulent Slot Jet Flow Impinging on a Flat Plate
,”
J. Mech. Sci. Technol.
,
31
(
11
), pp.
5347
5357
.10.1007/s12206-017-1029-9
17.
Hamdi
,
J.
,
Abed-Meraïm
,
K.
,
Assoum
,
H.
,
Sakout
,
A.
,
Mrach
,
T.
,
Al-Kheir
,
M.
,
Rambault
,
L.
,
Cauet
,
S.
, and
Etien
,
E.
,
2019
, “
Volumetric Proper Orthogonal Decomposition of an Impinging Jet Using SPIV Measurement
,”
MATEC Web Conf.
,
261
, p.
03006
.10.1051/matecconf/201926103006
18.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T. M.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.10.2514/1.J056060
19.
Torres
,
P.
,
Goncalves
,
N. D.
,
Fonte
,
C. P.
,
Dias
,
M. M.
,
Lopes
,
J. C. B.
,
Liné
,
A.
, and
Santos
,
R. J.
,
2019
, “
Proper Orthogonal Decomposition and Statistical Analysis of 2D Confined Impinging Jets Chaotic Flow
,”
Chem. Eng. Technol.
,
42
(
8
), pp.
1709
1716
.
20.
Geers
,
L. F. G.
,
Tummers
,
M. J.
, and
Hanjalić
,
K.
,
2005
, “
Particle Imaging Velocimetry-Based Identification of Coherent Structures in Normally Impinging Multiple Jets
,”
Phys. Fluids
,
17
(
5
), p.
055105
.10.1063/1.1900804
21.
Hammad
,
K. J.
, and
Milanovic
,
I. M.
,
2009
, “
A POD Study of an Impinging Jet Flowfield
,”
ASME
Paper No. FEDSM2009-78398.10.1115/FEDSM2009-78398
22.
Ritcey
,
A.
,
McDermid
,
J.
, and
Ziada
,
S.
,
2018
, “
The Fluctuating Velocity Field of a Forced Planar Impinging Gas Jet
,”
J. Turbul.
,
19
(
9
), pp.
798
825
.10.1080/14685248.2018.1513137
23.
Phan
,
L. Q.
,
Johnstone
,
A. D.
,
Kosasih
,
B.
, and
Renshaw
,
W.
,
2020
, “
Vortex Dynamics and Fluctuations of Impinging Planar Jet
,”
ISIJ Int.
,
60
(
5
), pp.
1030
1039
.10.2355/isijinternational.ISIJINT-2019-566
24.
Beltaos
,
S.
, and
Rajaratnam
,
N.
,
1973
, “
Plane Turbulent Impinging Jets
,”
J. Hydraul. Res.
,
11
(
1
), pp.
29
59
.10.1080/00221687309499789
25.
Gutmark
,
E.
,
Wolfshtein
,
M.
, and
Wygnanski
,
I.
,
1978
, “
The Plane Turbulent Impinging Jet
,”
J. Fluid Mech.
,
88
(
4
), pp.
737
756
.10.1017/S0022112078002360
26.
Arthurs
,
D.
, and
Ziada
,
S.
,
2012
, “
Self-Excited Oscillations of a High-Speed Impinging Planar Jet
,”
J. Fluids Struct.
,
34
, pp.
236
258
.10.1016/j.jfluidstructs.2012.06.002
27.
Arthurs
,
D.
, and
Ziada
,
S.
,
2014
, “
Development of a Feedback Model for the High-Speed Impinging Planar Jet
,”
Exp. Fluids
,
55
(
5
), p.
1723
.10.1007/s00348-014-1723-7
28.
Guo
,
C. Y.
, and
Maxwell
,
W. H. C.
,
1984
, “
Numerical Modeling of Normal Turbulent Plane Jet Impingement on Solid Wall
,”
J. Eng. Mech.
,
110
(
10
), pp.
1498
1509
.10.1061/(ASCE)0733-9399(1984)110:10(1498)
29.
Finnerty
,
D.
,
McDermid
,
J. R.
,
Goodwin
,
F. E.
, and
Ziada
,
S.
,
2015
, “
The Effect of Auxiliary Jets on Excited Tones in Gas Jet Wiping
,” 10th International Congress on Zinc and Zinc Alloy Coated Steel Sheet,
Toronto, ON, Canada
, May 31-June 4, pp.
702
707
.
30.
Takeda
,
G.
,
Takahashi
,
H.
, and
Kabeya
,
K.
,
2017
, “
Jet Flow Characteristics of 3-Slot Nozzle in Gas Wiping Process at Continuous Galvanizing Line
,”
ISIJ Int.
,
57
(
6
), pp.
1087
1093
.10.2355/isijinternational.ISIJINT-2016-715
31.
Kweon
,
Y.-H.
, and
Kim
,
H.-D.
,
2011
, “
Study on the Wiping Gas Jet in Continuous Galvanizing Line
,”
J. Therm. Sci.
,
20
(
3
), pp.
242
247
.10.1007/s11630-011-0465-6
32.
Lacanette
,
D.
,
Gosset
,
A.
,
Vincent
,
S.
,
Buchlin
,
J.-M.
, and
Arquis
,
É.
,
2006
, “
Macroscopic Analysis of Gas-Jet Wiping: Numerical Simulation and Experimental Approach
,”
Phys. Fluids
,
18
(
4
), p.
042103
.10.1063/1.2186589
33.
Tu
,
C. V.
, and
Wood
,
D. H.
,
1996
, “
Wall Pressure and Shear Stress Measurements Beneath an Impinging Jet
,”
Exp. Therm. Fluid Sci.
,
13
(
4
), pp.
364
373
.10.1016/S0894-1777(96)00093-3
34.
Beaubert
,
F.
, and
Viazzo
,
S.
,
2003
, “
Large Eddy Simulations of Plane Turbulent Impinging Jets at Moderate Reynolds Numbers
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
512
519
.10.1016/S0142-727X(03)00045-6
35.
Dai
,
Y.
,
Kobayashi
,
T.
, and
Taniguchi
,
N.
,
1994
, “
Large Eddy Simulation of Plane Turbulent Jet Flow Using a New Outflow Velocity Boundary Condition
,”
JSME Int. J. Ser. B
,
37
(
2
), pp.
242
253
.10.1299/jsmeb.37.242
36.
Cziesla
,
T.
,
Biswas
,
G.
,
Chattopadhyay
,
H.
, and
Mitra
,
N. K.
,
2001
, “
Large-Eddy Simulation of Flow and Heat Transfer in an Impinging Slot Jet
,”
Int. J. Heat Fluid Flow
,
22
(
5
), pp.
500
508
.10.1016/S0142-727X(01)00105-9
37.
Voke
,
P. R.
,
Gao
,
S.
, and
Leslie
,
D.
,
1995
, “
Large-Eddy Simulations of Plane Impinging Jets
,”
Int. J. Numer. Methods Eng.
,
38
(
3
), pp.
489
507
.10.1002/nme.1620380309
38.
Kubacki
,
S.
,
Rokicki
,
J.
,
Dick
,
E.
,
Degroote
,
J.
, and
Vierendeels
,
J.
,
2013
, “
Hybrid RANS/LES of Plane Jets Impinging on a Flat Plate at Small Nozzle-Plate Distances
,”
Arch. Mech.
,
65
(
2
), pp.
143
166
.
39.
Beaubert
,
F.
, and
Viazzo
,
S.
,
2001
, “
Large Eddy Simulations of Plane Turbulent Impinging Jets
,”
14th Australasian Fluid Mechanics Conference
,
Adelaide University
,
Adelaide, Australia
, Dec 10-14, pp.
425
428
.
40.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
41.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,”
Atmospheric Turbulence and Radio Wave Propagation
, Nauka, Moscow, Russia, pp.
221
227
.
42.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures Part I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.10.1090/qam/910462
43.
Chen
,
H.
,
Reuss
,
D. L.
,
Hung
,
D. L. S.
, and
Sick
,
V.
,
2013
, “
A Practical Guide for Using Proper Orthogonal Decomposition in Engine Research
,”
Int. J. Engine Res.
,
14
(
4
), pp.
307
319
.10.1177/1468087412455748
44.
Sakai
,
Y.
,
Tanaka
,
N.
, and
Kushida
,
T.
,
2006
, “
On the Development of Coherent Structure in a Plane Jet (Part 1, Characteristics of Two-Point Velocity Correlation and Analysis of Eigenmodes by the KL Expansion)
,”
JSME Int. J. Ser. B
,
49
(
1
), pp.
115
124
.10.1299/jsmeb.49.115
45.
Rubel
,
A.
,
1980
, “
Computations of Jet Impingement on a Flat Surface
,”
AIAA J.
,
18
(
2
), pp.
168
175
.10.2514/3.50746
46.
Meyer
,
K. E.
,
Cavar
,
D.
, and
Pedersen
,
J. M.
,
2007
, “
POD as Tool for Comparison of PIV and LES Data
,”
Seventh International Symposium on Particle Image Velocimetry
,
Rome, Italia
, Sep 11–14.
You do not currently have access to this content.