Abstract

The carotid artery is one of the most favorable locations for atherosclerotic plaque accumulation due to its unique geometry. It predominantly occurs at the outer wall of the internal carotid artery (ICA) near the carotid sinus. Fluid–structure interaction study of hemodynamics in the carotid artery with a focus on carotid sinus plays a prominent role in explaining the development and progression of the atherosclerotic lesion. In this study, hemodynamic parameters affecting the plaque accumulation in the carotid artery were investigated with a focus on the carotid sinus. An idealized carotid artery model was taken and hemodynamic parameters such as deformation, wall shear stress (WSS), oscillatory shear index (OSI), relative residence time (RRT), and Helicity were investigated. The atherosclerosis-prone carotid sinus region had significantly low WSS, and low helicity resulting in higher OSI. In these regions, the flow separation had decreased the velocity significantly with a high-velocity angle. The flow divider had significantly elevated WSS due to a higher pressure gradient. Stenosis is predicted to occur at the downstream area of the carotid sinus and develop downstream due to flow separation leading to endothelial dysfunction. Decreased vascular WSS, helicity, and higher OSI are key to the development of endothelial dysfunction leading to atherosclerotic lesion in the carotid sinus.

References

1.
Huang, W.-Y., Weng, W.-C., Su, F.-C., and Lin, S.-W.,
2018
, “
Association Between Stroke Severity and 5-Year Mortality in Ischemic Stroke Patients With High-Grade Stenosis of Internal Carotid Artery
,”
J. Stroke Cerebrovasc. Dis.
,
27
(
11
), pp.
3365
3372
.10.1016/j.jstrokecerebrovasdis.2018.07.042
2.
Schulz
,
U. G. R.
, and
Rothwell
,
P. M.
,
2001
, “
Sex Differences in Carotid Bifurcation Anatomy and the Distribution of Atherosclerotic Plaque
,”
Stroke
,
32
(
7
), pp.
1525
1531
.10.1161/01.STR.32.7.1525
3.
Fu
,
X.
,
Liu
,
Q.
,
Zeng
,
X.
,
Huang
,
S.
,
Huang
,
R.
, and
Gao
,
Q.
,
2018
, “
Association Between Cerebral Arterial Stiffness and Large Artery Atherosclerosis in Acute Ischemic Stroke
,”
J. Stroke Cerebrovasc. Dis.
,
27
(
11
), pp.
2993
3000
.10.1016/j.jstrokecerebrovasdis.2018.06.033
4.
Nagargoje
,
M.
, and
Gupta
,
R.
,
2020
, “
Effect of Sinus Size and Position on Hemodynamics During Pulsatile Flow in a Carotid Artery Bifurcation
,”
Comput. Methods Programs Biomed.
,
192
, p.
105440
.10.1016/j.cmpb.2020.105440
5.
Frangos
,
S. G.
,
Gahtan
,
V.
, and
Sumpio
,
B.
,
1999
, “
Localization of Atherosclerosis: Role of Hemodynamics
,”
Arch. Surg.
,
134
(
10
), pp.
1142
1149
.10.1001/archsurg.134.10.1142
6.
Rindt
,
C. C. M.
,
Van Steenhoven
,
A. A.
,
Janssen
,
J. D.
,
Reneman
,
R. S.
, and
Segal
,
A.
,
1990
, “
A Numerical Analysis of Steady Flow in a Three-Dimensional Model of the Carotid Artery Bifurcation
,”
J. Biomech.
,
23
(
5
), pp.
461
473
.10.1016/0021-9290(90)90302-J
7.
Lui
,
M.
,
Martino
,
S.
,
Salerno
,
M.
, and
Quadrio
,
M.
,
2020
, “
On the Turbulence Modeling of Blood Flow in a Stenotic Vessel
,”
ASME J. Biomech. Eng.
,
142
(
1
), p. 011009.10.1115/1.4044029
8.
Takami
,
Y.
,
Norikane
,
T.
,
Yamamoto
,
Y.
,
Fujimoto
,
K.
,
Mitamura
,
K.
,
Okauchi
,
M.
,
Kawanishi
,
M.
, and
Nishiyama
,
Y.
,
2020
, “
A Preliminary Study of Relationship Among the Degree of Internal Carotid Artery Stenosis, Wall Shear Stress on MR Angiography and 18 F-FDG Uptake on PET/CT
,”
J. Nucl. Cardiol.
,
27
(
4
), pp.
1
9
.10.1007/s12350-020-02300-3
9.
Schirmer
,
C. M.
, and
Malek
,
A. M.
,
2012
, “
Computational Fluid Dynamic Characterization of Carotid Bifurcation Stenosis in Patient-Based Geometries
,”
Brain Behav.
,
2
(
1
), pp.
42
52
.10.1002/brb3.25
10.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
11.
Slager
,
C. J.
,
Wentzel
,
J. J.
,
Gijsen
,
F. J. H.
,
Schuurbiers
,
J. C. H.
,
der Wal
,
A. C.
,
der Steen
,
A. F. W.
, and
Serruys
,
P. W.
,
2005
, “
The Role of Shear Stress in the Generation of Rupture-Prone Vulnerable Plaques
,”
Nat. Clin. Pract. Cardiovasc. Med.
,
2
(
8
), pp.
401
407
.10.1038/ncpcardio0274
12.
Gibson
,
C. M.
,
Diaz
,
L.
,
Kandarpa
,
K.
,
Sacks
,
F. M.
,
Pasternak
,
R. C.
,
Sandor
,
T.
,
Feldman
,
C.
, and
Stone
,
P. H.
,
1993
, “
Relation of Vessel Wall Shear Stress to Atherosclerosis Progression in Human Coronary Arteries
,”
Arterioscler. Thromb. J. Vasc. Biol.
,
13
(
2
), pp.
310
315
.10.1161/01.ATV.13.2.310
13.
Burns
,
A. R.
,
Zheng
,
Z.
,
Soubra
,
S. H.
,
Chen
,
J.
, and
Rumbaut
,
R. E.
,
2007
, “
Transendothelial Flow Inhibits Neutrophil Transmigration Through a Nitric Oxide-Dependent Mechanism: Potential Role for Cleft Shear Stress
,”
Am. J. Physiol. Circ. Physiol.
,
293
(
5
), pp.
H2904
H2910
.10.1152/ajpheart.00871.2007
14.
Samady
,
H.
,
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Suo
,
J.
,
Dhawan
,
S. S.
,
Maynard
,
C.
,
Timmins
,
L. H.
,
Quyyumi
,
A. A.
, and
Giddens
,
D. P.
,
2011
, “
Coronary Artery Wall Shear Stress is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease
,”
Circulation
,
124
(
7
), pp.
779
788
.10.1161/CIRCULATIONAHA.111.021824
15.
Hung
,
O. Y.
,
Brown
,
A. J.
,
Ahn
,
S. G.
,
Veneziani
,
A.
,
Giddens
,
D. P.
, and
Samady
,
H.
,
2015
, “
Association of Wall Shear Stress With Coronary Plaque Progression and Transformation
,”
Interv. Cardiol. Clin.
,
4
(
4
), pp.
491
502
.10.1016/j.iccl.2015.06.009
16.
Lee
,
J. M.
,
Choi
,
K. H.
,
Koo
,
B.-K.
,
Park
,
J.
,
Kim
,
J.
,
Hwang
,
D.
,
Rhee
,
T.-M.
,
Kim
,
H. Y.
,
Jung
,
H. W.
,
Kim
,
K.-J.
,
Yoshiaki
,
K.
,
Shin
,
E.-S.
,
Doh
,
J.-H.
,
Chang
,
H.-J.
,
Cho
,
Y.-K.
,
Yoon
,
H.-J.
,
Nam
,
C.-W.
,
Hur
,
S.-H.
,
Wang
,
J.
,
Chen
,
S.
,
Kuramitsu
,
S.
,
Tanaka
,
N.
,
Matsuo
,
H.
, and
Akasaka
,
T.
,
2019
, “
Prognostic Implications of Plaque Characteristics and Stenosis Severity in Patients With Coronary Artery Disease
,”
J. Am. Coll. Cardiol.
,
73
(
19
), pp.
2413
2424
.10.1016/j.jacc.2019.02.060
17.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arterioscler. Off. J. Am. Hear. Assoc. Inc.
,
5
(
3
), pp.
293
302
.10.1161/01.ATV.5.3.293
18.
Wentzel
,
J. J.
,
Chatzizisis
,
Y. S.
,
Gijsen
,
F. J. H.
,
Giannoglou
,
G. D.
,
Feldman
,
C. L.
, and
Stone
,
P. H.
,
2012
, “
Endothelial Shear Stress in the Evolution of Coronary Atherosclerotic Plaque and Vascular Remodelling: Current Understanding and Remaining Questions
,”
Cardiovasc. Res.
,
96
(
2
), pp.
234
243
.10.1093/cvr/cvs217
19.
Ciri
,
U.
,
Bhui
,
R.
,
Bailon-Cuba
,
J.
,
Hayenga
,
H. N.
, and
Leonardi
,
S.
,
2018
, “
Dependence of Leukocyte Capture on Instantaneous Pulsatile Flow
,”
J. Biomech.
,
76
, pp.
84
93
.10.1016/j.jbiomech.2018.05.044
20.
Schirmer
,
C. M.
, and
Malek
,
A. M.
,
2010
, “
Critical Influence of Framing Coil Orientation on Intra-Aneurysmal and Neck Region Hemodynamics in a Sidewall Aneurysm Model
,”
Neurosurgery
,
67
(
6
), pp.
1692
1702
.10.1227/NEU.0b013e3181f9a93b
21.
Conti
,
M.
,
Long
,
C.
,
Marconi
,
M.
,
Berchiolli
,
R.
,
Bazilevs
,
Y.
, and
Reali
,
A.
,
2016
, “
Carotid Artery Hemodynamics Before and After Stenting: A Patient Specific CFD Study
,”
Comput. Fluids
,
141
, pp.
62
74
.10.1016/j.compfluid.2016.04.006
22.
Li
,
C. H.
,
Gao
,
B. L.
,
Wang
,
J. W.
,
Liu
,
J. F.
,
Li
,
H.
, and
Yang
,
S. T.
,
2019
, “
Hemodynamic Factors Affecting Carotid Sinus Atherosclerotic Stenosis
,”
World Neurosurg.
,
121
, pp.
e262
e276
.10.1016/j.wneu.2018.09.091
23.
Gallo
,
D.
,
Steinman
,
D. A.
, and
Morbiducci
,
U.
,
2016
, “
Insights Into the Co-Localization of Magnitude-Based Versus Direction-Based Indicators of Disturbed Shear at the Carotid Bifurcation
,”
J. Biomech.
,
49
(
12
), pp.
2413
2419
.10.1016/j.jbiomech.2016.02.010
24.
Azar
,
D.
,
Torres
,
W. M.
,
Davis
,
L. A.
,
Shaw
,
T.
,
Eberth
,
J. F.
,
Kolachalama
,
V. B.
,
Lessner
,
S. M.
, and
Shazly
,
T.
,
2019
, “
Geometric Determinants of Local Hemodynamics in Severe Carotid Artery Stenosis
,”
Comput. Biol. Med.
,
114
, p.
103436
.10.1016/j.compbiomed.2019.103436
25.
Gallo
,
D.
,
Steinman
,
D. A.
,
Bijari
,
P. B.
, and
Morbiducci
,
U.
,
2012
, “
Helical Flow in Carotid Bifurcation as Surrogate Marker of Exposure to Disturbed Shear
,”
J. Biomech.
,
45
(
14
), pp.
2398
2404
.10.1016/j.jbiomech.2012.07.007
26.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Grigioni
,
M.
, and
Redaelli
,
A.
,
2007
, “
Helical Flow as Fluid Dynamic Signature for Atherogenesis Risk in Aortocoronary Bypass. A Numeric Study
,”
J. Biomech.
,
40
(
3
), pp.
519
534
.10.1016/j.jbiomech.2006.02.017
27.
Morbiducci
,
U.
,
Gallo
,
D.
,
Ponzini
,
R.
,
Massai
,
D.
,
Antiga
,
L.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2010
, “
Quantitative Analysis of Bulk Flow in Image-Based Hemodynamic Models of the Carotid Bifurcation: The Influence of Outflow Conditions as Test Case
,”
Ann. Biomed. Eng.
,
38
(
12
), pp.
3688
3705
.10.1007/s10439-010-0102-7
28.
Lopes
,
D.
,
Puga
,
H.
,
Teixeira
,
J. C.
, and
Teixeira
,
S. F.
,
2019
, “
Influence of Arterial Mechanical Properties on Carotid Blood Flow: Comparison of CFD and FSI Studies
,”
Int. J. Mech. Sci.
,
160
, pp.
209
218
.10.1016/j.ijmecsci.2019.06.029
29.
Malvè
,
M.
,
García
,
A.
,
Ohayon
,
J.
, and
Martínez
,
M. A.
,
2012
, “
Unsteady Blood Flow and Mass Transfer of a Human Left Coronary Artery Bifurcation: FSI Vs. CFD
,” Int.
Commun. Heat Mass Transfer
,
39
(
6
), pp.
745
751
.10.1016/j.icheatmasstransfer.2012.04.009
30.
De Wilde
,
D.
,
Trachet
,
B.
,
De Meyer
,
G.
, and
Segers
,
P.
,
2016
, “
The Influence of Anesthesia and Fluid–Structure Interaction on Simulated Shear Stress Patterns in the Carotid Bifurcation of Mice
,”
J. Biomech.
,
49
(
13
), pp.
2741
2747
.10.1016/j.jbiomech.2016.06.010
31.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
,
2008
, “
Fluid–Structure Interaction Modeling of a Patient-Specific Cerebral Aneurysm: Influence of Structural Modeling
,”
Comput. Mech.
,
43
(
1
), pp.
151
159
.10.1007/s00466-008-0325-8
32.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Zhang
,
Y.
, and
Hughes
,
T. J. R.
,
2006
, “
Isogeometric Fluid–Structure Interaction Analysis With Applications to Arterial Blood Flow
,”
Comput. Mech.
,
38
(
4–5
), pp.
310
322
.10.1007/s00466-006-0084-3
33.
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2007
, “
Finite Element Modeling of Balloon Angioplasty by Considering Overstretch of Remnant Non-Diseased Tissues in Lesions
,”
Comput. Mech.
,
40
(
1
), pp.
47
60
.10.1007/s00466-006-0081-6
34.
Kumar
,
N.
,
Khader
,
S. M. A.
,
Pai
,
R.
,
Khan
,
S. H.
, and
Kyriacou
,
P. A.
,
2020
, “
Fluid Structure Interaction Study of Stenosed Carotid Artery Considering the Effects of Blood Pressure
,”
Int. J. Eng. Sci.
,
154
, p.
103341
.10.1016/j.ijengsci.2020.103341
35.
Savabi
,
R.
,
Nabaei
,
M.
,
Farajollahi
,
S.
, and
Fatouraee
,
N.
,
2020
, “
Fluid Structure Interaction Modeling of Aortic Arch and Carotid Bifurcation as the Location of Baroreceptors
,”
Int. J. Mech. Sci.
,
165
, p.
105222
.10.1016/j.ijmecsci.2019.105222
36.
Tang
,
D.
,
Yang
,
C.
,
Canton
,
G.
,
Wu
,
Z.
,
Hatsukami
,
T.
, and
Yuan
,
C.
,
2013
, “
Correlations Between Carotid Plaque Progression and Mechanical Stresses Change Sign Over Time: A Patient Follow Up Study Using MRI and 3D FSI Models
,”
Biomed. Eng. Online
,
12
(
1
), p.
105
.10.1186/1475-925X-12-105
37.
Harrison
,
G. J.
,
How
,
T. V.
,
Poole
,
R. J.
,
Brennan
,
J. A.
,
Naik
,
J. B.
,
Vallabhaneni
,
S. R.
, and
Fisher
,
R. K.
,
2014
, “
Closure Technique After Carotid Endarterectomy Influences Local Hemodynamics
,”
J. Vasc. Surg.
,
60
(
2
), pp.
418
427
.10.1016/j.jvs.2014.01.069
38.
Lopes
,
D.
,
Puga
,
H.
,
Teixeira
,
J.
, and
Lima
,
R.
,
2020
, “
Blood Flow Simulations in Patient-Specific Geometries of the Carotid Artery: A Systematic Review
,”
J. Biomech.
,
111
, p.
110019
.10.1016/j.jbiomech.2020.110019
39.
Bodnár
,
T.
,
Sequeira
,
A.
, and
Prosi
,
M.
,
2011
, “
On the Shear-Thinning and Viscoelastic Effects of Blood Flow Under Various Flow Rates
,”
Appl. Math. Comput.
,
217
(
11
), pp.
5055
5067
.10.1016/j.amc.2010.07.054
40.
Anand
,
M.
,
Kwack
,
J.
, and
Masud
,
A.
,
2013
, “
A New Generalized Oldroyd-B Model for Blood Flow in Complex Geometries
,”
Int. J. Eng. Sci.
,
72
, pp.
78
88
.10.1016/j.ijengsci.2013.06.009
41.
Berntsson
,
F.
,
Ghosh
,
A.
,
Kozlov
,
V. A.
, and
Nazarov
,
S. A.
,
2018
, “
A One Dimensional Model of Blood Flow Through a Curvilinear Artery
,”
Appl. Math. Model.
,
63
, pp.
633
643
.10.1016/j.apm.2018.07.019
42.
Liu
,
Y.
,
2012
, “
A Lattice Boltzmann Model for Blood Flows
,”
Appl. Math. Model.
,
36
(
7
), pp.
2890
2899
.10.1016/j.apm.2011.09.076
43.
Xiang
,
J.
,
Tremmel
,
M.
,
Kolega
,
J.
,
Levy
,
E. I.
,
Natarajan
,
S. K.
, and
Meng
,
H.
,
2012
, “
Newtonian Viscosity Model Could Overestimate Wall Shear Stress in Intracranial Aneurysm Domes and Underestimate Rupture Risk
,”
J. Neurointerv. Surg.
,
4
(
5
), pp.
351
357
.10.1136/neurintsurg-2011-010089
44.
Jonášová
,
A.
, and
Vimmr
,
J.
,
2018
, “
Noninvasive Assessment of Carotid Artery Stenoses by the Principle of Multiscale Modelling of Non-Newtonian Blood Flow in Patient-Specific Models
,”
Appl. Math. Comput.
,
319
, pp.
598
616
.10.1016/j.amc.2017.07.032
45.
Guerra
,
T.
,
Catarino
,
C.
,
Mestre
,
T.
,
Santos
,
S.
,
Tiago
,
J.
, and
Sequeira
,
A.
,
2018
, “
A Data Assimilation Approach for Non-Newtonian Blood Flow Simulations in 3D Geometries
,”
Appl. Math. Comput.
,
321
, pp.
176
194
.10.1016/j.amc.2017.10.029
46.
Vassen
,
J.-M.
,
DeVincenzo
,
P.
,
Hirsch
,
C.
, and
Leonard
,
B.
,
2011
, “
Strong Coupling Algorithm to Solve Fluid-Structure-Interaction Problems With a Staggered Approach
,”
Proceedings of the 7th European Symposium on Aerothermodynamics
, Brugge, Belgium, May 9–12, ESA Communications, Noordwijk, p.
128
.
47.
Boyd
,
J.
,
Buick
,
J. M.
, and
Green
,
S.
,
2007
, “
Analysis of the Casson and Carreau-Yasuda Non-Newtonian Blood Models in Steady and Oscillatory Flows Using the Lattice Boltzmann Method
,”
Phys. Fluids
,
19
(
9
), p.
93103
.10.1063/1.2772250
48.
Seo
,
T.
,
2013
, “
Hemodynamic Characteristics in the Human Carotid Artery Model Induced by Blood-Arterial Wall Interactions
,”
Int. J. Biolog., Agric. Biosyst. Life Sci. Eng.
,
7
(
5
), pp.
153
158
.10.5281/zenodo.1088454
49.
GrabCAD, “
Carotid Bifurcation | 3D CAD Model Library | GrabCAD
,” GrabCAD.
50.
Standring
,
S.
,
2020
,
Gray's Anatomy E-Book: The Anatomical Basis of Clinical Practice
,
Elsevier Health Sciences, Amsterdam, The Netherlands
.
51.
Gharahi
,
H.
,
Zambrano
,
B. A.
,
Zhu
,
D. C.
,
DeMarco
,
J. K.
, and
Baek
,
S.
,
2016
, “
Computational Fluid Dynamic Simulation of Human Carotid Artery Bifurcation Based on Anatomy and Volumetric Blood Flow Rate Measured With Magnetic Resonance Imaging
,”
Int. J. Adv. Eng. Sci. Appl. Math.
,
8
(
1
), pp.
46
60
.10.1007/s12572-016-0161-6
52.
Saeid Khalafvand
,
S.
, and
Han
,
H.-C.
,
2015
, “
Stability of Carotid Artery Under Steady State and Pulsatile Blood Flow: A Fluid–Structure Interaction Study
,”
ASME J. Biomech. Eng.
,
137
(
6
), p.
061007
.10.1115/1.4030011
53.
Moradicheghamahi
,
J.
,
Sadeghiseraji
,
J.
, and
Jahangiri
,
M.
,
2019
, “
Numerical Solution of the Pulsatile, Non-Newtonian and Turbulent Blood Flow in a Patient Specific Elastic Carotid Artery
,”
Int. J. Mech. Sci.
,
150
, pp.
393
403
.10.1016/j.ijmecsci.2018.10.046
54.
Rabbi
,
M. F.
,
Laboni
,
F. S.
, and
Arafat
,
M. T.
,
2020
, “
Computational Analysis of the Coronary Artery Hemodynamics With Different Anatomical Variations
,”
Inf. Med. Unlocked
,
19
, p.
100314
.10.1016/j.imu.2020.100314
55.
Gnasso
,
A.
,
Irace
,
C.
,
Carallo
,
C.
,
De Franceschi
,
M. S.
,
Motti
,
C.
,
Mattioli
,
P. L.
, and
Pujia
,
A.
,
1997
, “
In Vivo Association Between Low Wall Shear Stress and Plaque in Subjects With Asymmetrical Carotid Atherosclerosis
,”
Stroke
,
28
(
5
), pp.
993
998
.10.1161/01.STR.28.5.993
56.
Chen
,
Z.
,
Yu
,
H.
,
Shi
,
Y.
,
Zhu
,
M.
,
Wang
,
Y.
,
Hu
,
X.
,
Zhang
,
Y.
,
Chang
,
Y.
,
Xu
,
M.
, and
Gao
,
W.
,
2017
, “
Vascular Remodelling Relates to an Elevated Oscillatory Shear Index and Relative Residence Time in Spontaneously Hypertensive Rats
,”
Sci. Rep.
,
7
(
1
), p.
2007
.10.1038/s41598-017-01906-x
57.
Gijsen
,
F.
,
Katagiri
,
Y.
,
Barlis
,
P.
,
Bourantas
,
C.
,
Collet
,
C.
,
Coskun
,
U.
,
Daemen
,
J.
,
Dijkstra
,
J.
,
Edelman
,
E.
,
Evans
,
P.
,
van der Heiden
,
K.
,
Hose
,
R.
,
Koo
,
B.-K.
,
Krams
,
R.
,
Marsden
,
A.
,
Migliavacca
,
F.
,
Onuma
,
Y.
,
Ooi
,
A.
,
Poon
,
E.
,
Samady
,
H.
,
Stone
,
P.
,
Takahashi
,
K.
,
Tang
,
D.
,
Thondapu
,
V.
,
Tenekecioglu
,
E.
,
Timmins
,
L.
,
Torii
,
R.
,
Wentzel
,
J.
, and
Serruys
,
P.
, and others,
2019
, “
Expert Recommendations on the Assessment of Wall Shear Stress in Human Coronary Arteries: Existing Methodologies, Technical Considerations, and Clinical Applications
,”
Eur. Heart J.
,
40
(
41
), pp.
3421
3433
.10.1093/eurheartj/ehz551
58.
Irace
,
C.
,
Cortese
,
C.
,
Fiaschi
,
E.
,
Carallo
,
C.
,
Farinaro
,
E.
, and
Gnasso
,
A.
,
2004
, “
Wall Shear Stress is Associated With Intima-Media Thickness and Carotid Atherosclerosis in Subjects at Low Coronary Heart Disease Risk
,”
Stroke
,
35
(
2
), pp.
464
468
.10.1161/01.STR.0000111597.34179.47
59.
Nigro
,
P.
,
Abe
,
J.
, and
Berk
,
B. C.
,
2011
, “
Flow Shear Stress and Atherosclerosis: A Matter of Site Specificity
,”
Antioxid. Redox Signal.
,
15
(
5
), pp.
1405
1414
.10.1089/ars.2010.3679
60.
Cunningham
,
K. S.
, and
Gotlieb
,
A. I.
,
2005
, “
The Role of Shear Stress in the Pathogenesis of Atherosclerosis
,”
Lab. Invest.
,
85
(
1
), pp.
9
23
.10.1038/labinvest.3700215
61.
Belian
,
A.
,
Chkhetiani
,
O.
,
Golbraikh
,
E.
, and
Moiseev
,
S.
,
1998
, “
Helical Turbulence: Turbulent Viscosity and Instability of the Second Moments
,”
Phys. A Stat. Mech. Appl.
,
258
(
1–2
), pp.
55
68
.10.1016/S0378-4371(98)00212-X
62.
Moffatt
,
H. K.
,
1978
,
Field Generation in Electrically Conducting Fluids
, Vol.
2
,
Cambridge University Press
,
Cambridge, London, New York
, pp.
1
5
.
63.
Gallo
,
D.
,
Steinman
,
D. A.
, and
Morbiducci
,
U.
,
2015
, “
An Insight Into the Mechanistic Role of the Common Carotid Artery on the Hemodynamics at the Carotid Bifurcation
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
68
81
.10.1007/s10439-014-1119-0
64.
Vorobtsova
,
N.
,
Chiastra
,
C.
,
Stremler
,
M. A.
,
Sane
,
D. C.
,
Migliavacca
,
F.
, and
Vlachos
,
P.
,
2016
, “
Effects of Vessel Tortuosity on Coronary Hemodynamics: An Idealized and Patient-Specific Computational Study
,”
Ann. Biomed. Eng.
,
44
(
7
), pp.
2228
2239
.10.1007/s10439-015-1492-3
65.
Abugattas
,
C.
,
Aguirre
,
A.
,
Castillo
,
E.
, and
Cruchaga
,
M.
,
2020
, “
Numerical Study of Bifurcation Blood Flows Using Three Different Non-Newtonian Constitutive Models
,”
Appl. Math. Model.
,
88
, pp.
529
549
.10.1016/j.apm.2020.06.066
66.
Tu
,
C.
, and
Deville
,
M.
,
1996
, “
Pulsatile Flow of Non-Newtonian Fluids Through Arterial Stenoses
,”
J. Biomech.
,
29
(
7
), pp.
899
908
.10.1016/0021-9290(95)00151-4
67.
Caballero
,
A. D.
, and
Lain
,
S.
,
2015
, “
Numerical Simulation of Non-Newtonian Blood Flow Dynamics in Human Thoracic Aorta
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
11
), pp.
1200
1216
.10.1080/10255842.2014.887698
68.
Lee
,
S.-W.
, and
Steinman
,
D. A.
,
2007
, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.,
129
(
2
),
273
278
.10.1115/1.2540836
69.
Bilgi
,
C.
, and
Atalık
,
K.
,
2020
, “
Effects of Blood Viscoelasticity on Pulsatile Hemodynamics in Arterial Aneurysms
,”
J. Non-Newtonian Fluid Mech.
,
279
, p.
104263
.10.1016/j.jnnfm.2020.104263
70.
Morbiducci
,
U.
,
Gallo
,
D.
,
Massai
,
D.
,
Ponzini
,
R.
,
Deriu
,
M. A.
,
Antiga
,
L.
,
Redaelli
,
A.
, and
Montevecchi
,
F. M.
,
2011
, “
On the Importance of Blood Rheology for Bulk Flow in Hemodynamic Models of the Carotid Bifurcation
,”
J. Biomech.
,
44
(
13
), pp.
2427
2438
.10.1016/j.jbiomech.2011.06.028
71.
Morbiducci
,
U.
,
Mazzi
,
V.
,
Domanin
,
M.
,
De Nisco
,
G.
,
Vergara
,
C.
,
Steinman
,
D. A.
, and
Gallo
,
D.
,
2020
, “
Wall Shear Stress Topological Skeleton Independently Predicts Long-Term Restenosis After Carotid Bifurcation Endarterectomy
,”
Ann. Biomed. Eng.
,
48
(
12
), pp.
2936
2949
.10.1007/s10439-020-02607-9
72.
Hoogendoorn
,
A.
,
Kok
,
A. M.
,
Hartman
,
E. M. J.
,
de Nisco
,
G.
,
Casadonte
,
L.
,
Chiastra
,
C.
,
Coenen
,
A.
,
Korteland
,
S.-A.
,
Van der Heiden
,
K.
,
Gijsen
,
F. J. H.
,
Duncker
,
D. J.
,
van der Steen
,
A. F. W.
, and
Wentzel
,
J. J.
, and others,
2020
, “
Multidirectional Wall Shear Stress Promotes Advanced Coronary Plaque Development: Comparing Five Shear Stress Metrics
,”
Cardiovasc. Res.
,
116
(
6
), pp.
1136
1146
.10.1093/cvr/cvz212
73.
Castagna
,
M.
,
Levilly
,
S.
,
Paul-Gilloteaux
,
P.
,
Moussaoui
,
S.
,
Rousset
,
J.-M.
,
Bonnefoy
,
F.
,
Idier
,
J.
,
Serfaty
,
J.-M.
, and
Le Touzé
,
D.
,
2021
, “
An LDV Based Method to Quantify the Error of PC-MRI Derived Wall Shear Stress Measurement
,”
Sci. Rep.
,
11
(
1
), p. 4112
.10.1038/s41598-021-83633-y
74.
Van Langenhove
,
G.
,
Wentzel
,
J. J.
,
Krams
,
R.
,
Slager
,
C. J.
,
Hamburger
,
J. N.
, and
Serruys
,
P. W.
,
2000
, “
Helical Velocity Patterns in a Human Coronary Artery: A Three-Dimensional Computational Fluid Dynamic Reconstruction Showing the Relation With Local Wall Thickness
,”
Circulation
,
102
(
3
), pp.
e22
e24
.10.1161/01.CIR.102.3.e22
75.
Steinman
,
D. A.
,
Morbiducci
,
U.
,
Habets
,
D.
,
Wasserman
,
B. A.
,
Gallo
,
D.
,
Etesami
,
M.
,
Qiao
,
Y.
,
Bijari
,
P. B.
,
Xie
,
Y. (J.
,
).
, and
Lakatta
,
E. G.
,
2018
, “
Segment-Specific Associations Between Local Haemodynamic and Imaging Markers of Early Atherosclerosis at the Carotid Artery: An In Vivo Human Study
,”
J. R. Soc. Interface
,
15
(
147
), p.
20180352
.10.1098/rsif.2018.0352
76.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
Del Gaudio
,
C.
,
D'Avenio
,
G.
,
Balducci
,
A.
, and
Barbaro
,
V.
,
2005
, “
A Mathematical Description of Blood Spiral Flow in Vessels: Application to a Numerical Study of Flow in Arterial Bending
,”
J. Biomech.
,
38
(
7
), pp.
1375
1386
.10.1016/j.jbiomech.2004.06.028
77.
Pritchard
,
W. F.
,
Davies
,
P. F.
,
Derafshi
,
Z.
,
Polacek
,
D. C.
,
Tsao
,
R.
,
Dull
,
R. O.
,
Jones
,
S. A.
, and
Giddens
,
D. P.
,
1995
, “
Effects of Wall Shear Stress and Fluid Recirculation on the Localization of Circulating Monocytes in a Three-Dimensional Flow Model
,”
J. Biomech.
,
28
(
12
), pp.
1459
1469
.10.1016/0021-9290(95)00094-1
78.
Mahmoudi
,
M.
,
Farghadan
,
A.
,
McConnell
,
D. R.
,
Barker
,
A. J.
,
Wentzel
,
J. J.
,
Budoff
,
M. J.
, and
Arzani
,
A.
,
2021
, “
The Story of Wall Shear Stress in Coronary Artery Atherosclerosis: Biochemical Transport and Mechanotransduction
,”
ASME J. Biomech. Eng.
,
143
(
4
), p.
41002
.10.1115/1.4049026
79.
Mandrycky
,
C.
,
Hadland
,
B.
, and
Zheng
,
Y.
,
2020
, “
3D Curvature-Instructed Endothelial Flow Response and Tissue Vascularization
,”
Sci. Adv.
,
6
(
38
), p.
eabb3629
.10.1126/sciadv.abb3629
80.
De Nisco
,
G.
,
Kok
,
A. M.
,
Chiastra
,
C.
,
Gallo
,
D.
,
Hoogendoorn
,
A.
,
Migliavacca
,
F.
,
Wentzel
,
J. J.
, and
Morbiducci
,
U.
,
2019
, “
The Atheroprotective Nature of Helical Flow in Coronary Arteries
,”
Ann. Biomed. Eng.
,
47
(
2
), pp.
425
438
.10.1007/s10439-018-02169-x
81.
Liu
,
X.
,
Sun
,
A.
,
Fan
,
Y.
, and
Deng
,
X.
,
2015
, “
Physiological Significance of Helical Flow in the Arterial System and Its Potential Clinical Applications
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
3
15
.10.1007/s10439-014-1097-2
82.
Capelli
,
C.
,
Corsini
,
C.
,
Biscarini
,
D.
,
Ruffini
,
F.
,
Migliavacca
,
F.
,
Kocher
,
A.
,
Laufer
,
G.
,
Taylor
,
A. M.
,
Schievano
,
S.
,
Andreas
,
M.
,
Burriesci
,
G.
, and
Rath
,
C.
, and others,
2017
, “
Pledget-Armed Sutures Affect the Haemodynamic Performance of Biologic Aortic Valve Substitutes: A Preliminary Experimental and Computational Study
,”
Cardiovasc. Eng. Technol.
,
8
(
1
), pp.
17
29
.10.1007/s13239-016-0284-8
You do not currently have access to this content.