Abstract

Local entropy generation is derived from the second law of thermodynamics, which can directly identify the source of irreversible dissipation and learn more about the physical mechanism of performance degradation. Zwart cavitation model is modified to clarify the rapid head drop of a cavitation flow within a test centrifugal pump, and it is used to simulate the cavitation flow. Local entropy generation method is used to analyze the cavitation flow with varying net positive suction head. The magnitude of entropy generation in different types and regions is compared. Spatial distribution of turbulent and near-wall entropy generation are analyzed. Results show that the modified Zwart cavitation model can better capture the cavity morphology and its evolution. Turbulent and near-wall entropy generations, which mainly concentrate on the impeller, have a large proportion of total entropy generation. The rapid increase in fluctuating velocity entropy generation near the impeller blade pressure side and near-wall entropy generation near the trailing edge of the impeller blade are the main reasons for the rapid head drop within a test centrifugal pump. The sources of turbulent and near-wall entropy generation are vortex and shear stress, respectively.

References

1.
Hirschi
,
R.
,
Dupont
,
P.
,
Avellan
,
F.
,
Favre
,
J. N.
,
Guelich
,
J. F.
, and
Parkinson
,
E.
,
1998
, “
Centrifugal Pump Performance Drop Due to Leading Edge Cavitation: Numerical Predictions Compared With Model Tests
,”
ASME J. Fluids Eng.
,
120
(
4
), pp.
705
711
.10.1115/1.2820727
2.
Zhu
,
B.
,
Chen
,
H. X.
, and
Wei
,
Q.
,
2014
, “
Numerical and Experimental Investigation of Cavitating Characteristics in Centrifugal Pump With Gap Impeller
,”
Int. J. Turbo Jet Eng.
,
31
(
2
), pp.
187
196
.10.1515/tjj-2013-0046
3.
Medvitz
,
R. B.
,
Kunz
,
R. F.
,
Boger
,
D. A.
,
Lindau
,
J. W.
,
Yocum
,
A. M.
, and
Pauley
,
L. L.
,
2002
, “
Performance Analysis of Cavitating Flow in Centrifugal Pumps Using Multiphase CFD
,”
ASME J. Fluids Eng.
,
124
(
2
), pp. 377–383.10.1115/1.1457453
4.
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2003
, “
Unsteady PIV Flow Field Analysis of a Centrifugal Pump Impeller Under Rotating Cavitation
,”
Fifth International Symposium on Cavitation
, Osaka, Japan, Nov. 1–4, Paper No. CAV03-OS-6-005.http://flow.me.es.osakau.ac.jp/cav2003/Papers/Cav03-OS-6-005.pdf
5.
Rakibuzzaman
,
M.
,
Kim
,
K.
, and
Suh
,
S. H.
,
2018
, “
Numerical and Experimental Investigation of Cavitation Flows in a Multistage Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
32
(
3
), pp.
1071
1078
.10.1007/s12206-018-0209-6
6.
Pouffary
,
B.
,
Patella
,
R. F.
,
Reboud
,
J.
, and
Lambert
,
P.
,
2008
, “
Numerical Simulation of 3D Cavitating Flows: Analysis of Cavitation Head Drop in Turbomachinery
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061301
.10.1115/1.2917420
7.
Nohmi
,
M.
,
Goto
,
A.
,
Iga
,
Y.
, and
Ikohagi
,
T.
,
2003
, “
Experimental and Numerical Study of Cavitation Breakdown in a Centrifugal Pump
,”
ASME
Paper No. FEDSM2003-45409.10.1115/FEDSM2003-45409
8.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
101
(
4
), pp.
718
725
.10.1115/1.3451063
9.
Wang
,
C. Y.
,
Liu
,
M.
,
Zhao
,
Y. L.
,
Chong
,
D. T.
, and
Yan
,
J. J.
,
2020
, “
Entropy Generation Distribution Characteristics of a Supercritical Boiler Superheater During Transient Processes
,”
Energy
,
201
, p.
117596
.10.1016/j.energy.2020.117596
10.
Ibanez
,
G.
,
Lopez
,
A.
, and
Cuevas
,
S.
,
2012
, “
Optimum Wall Thickness Ratio Based on the Minimization of Entropy Generation in a Viscous Flow Between Parallel Plates
,”
Int. Commun. Heat Mass
,
39
(
5
), pp.
587
592
.10.1016/j.icheatmasstransfer.2012.03.011
11.
Ilis
,
G. G.
,
Mobedi
,
M.
, and
Sunden
,
B.
,
2008
, “
Effect of Aspect Ratio on Entropy Generation in a Rectangular Cavity With Differentially Heated Vertical Walls
,”
Int. Commun. Heat Mass
,
35
(
6
), pp.
696
703
.10.1016/j.icheatmasstransfer.2008.02.002
12.
Iandoli
,
C. L.
, and
Enrico
,
S.
,
2005
, “
3-D Numerical Calculation of the Local Entropy Generation Rates in a Radial Compressor Stage
,”
Int. J. Thermodyn.
,
8
(
2
), pp.
83
94
.10.5541/ijot.148
13.
Wang
,
S. L.
,
Zhang
,
L.
,
Zhang
,
Q.
, and
Ye
,
X. M.
,
2011
, “
Numerical Investigation of Entropy Generation and Optimization on a Centrifugal Fan
,”
J. Comput. Theor. Nanosci.
,
4
(
6
), pp.
2240
2245
.10.1166/asl.2011.1634
14.
Ji
,
L. L.
,
Li
,
W.
,
Shi
,
W. D.
,
Chang
,
H.
, and
Yang
,
Z. Y.
,
2020
, “
Energy Characteristics of Mixed-Flow Pump Under Different Tip Clearances Based on Entropy Production Analysis
,”
Energy
,
199
, p.
117447
.10.1016/j.energy.2020.117447
15.
Hou
,
H. C.
,
Zhang
,
Y. X.
,
Li
,
Z. L.
,
Jiang
,
T.
,
Zhang
,
J. Y.
, and
Xu
,
C.
,
2016
, “
Numerical Analysis of Entropy Production on a LNG Cryogenic Submerged Pump
,”
J. Nat. Gas Sci. Eng.
,
36
, pp.
87
96
.10.1016/j.jngse.2016.10.017
16.
Pei
,
J.
,
Meng
,
F.
,
Li
,
Y. J.
,
Yuan
,
S. Q.
, and
Chen
,
J.
,
2016
, “
Effects of Distance Between Impeller and Guide Vane on Losses in a Low Head Pump by Entropy Production Analysis
,”
Adv. Mech. Eng.
,
8
(
11
), pp.
1
11
.10.1177/1687814016679568
17.
Li
,
D. Y.
,
Wang
,
H. J.
,
Qin
,
Y. L.
,
Han
,
L.
,
Wei
,
X. Z.
, and
Qin
,
D. Q.
,
2017
, “
Entropy Production Analysis of Hysteresis Characteristic of a Pump-Turbine Model
,”
Energy Convers. Manage
,
149
, pp.
175
191
.10.1016/j.enconman.2017.07.024
18.
Li
,
X. J.
,
Jiang
,
Z. W.
,
Zhu
,
Z. C.
,
Si
,
Q. R.
, and
Li
,
Y.
,
2018
, “
Entropy Generation Analysis for the Cavitating Head-Drop Characteristic of a Centrifugal Pump
,”
Proc. Inst. Mech. Eng. C J. Mec.
,
232
(
24
), pp.
4637
4646
.10.1177/0954406217753458
19.
Zwart
,
P.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,” Fifth International Conference on Multiphase Flow, Yokohama, Japan, May 30–June 3, Paper No.
152
.https://www.researchgate.net/publication/306205415_A_twophase_flow_model_for_predicting_cavitation_dynamics
20.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A high-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
21.
Duan
,
L.
,
Wu
,
X. L.
,
Ji
,
Z. L.
, and
Fang
,
Q. X.
,
2015
, “
Entropy Generation Analysis on Cyclone Separators With Different Exit Pipe Diameters and Inlet Dimensions
,”
Chem. Eng. Sci.
,
138
, pp.
622
633
.10.1016/j.ces.2015.09.003
22.
Moffat
,
R. J.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
173
178
.10.1115/1.3242452
23.
Coutier-Delgosha
,
O.
,
2001
, “
ModéLisation Des Ecoulements Cavitants: Etude Des Comportements Instationnaires et Application Tridimensionnelle Aux Turbomachines
,”
Ph.D. dissertation
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.http://viaf.org/viaf/195943423
24.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
,
Reboud
,
J. L.
,
Hofmann
,
M.
, and
Stoffel
,
B.
,
2003
, “
Experimental and Numerical Studies in a Centrifugal Pump With Two-Dimensional Curved Blades in Cavitating Condition
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
492
497
.10.1115/1.1596238
25.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2011
,
Thermodynamics: An Engineering Approach
,
McGraw-Hill Education
,
New York
.
You do not currently have access to this content.