Abstract

In this study, we examine in detail the effect of spatially dependent viscosity on wall-bounded flow. For this purpose, direct numerical simulations (DNS) are performed considering a channel flow with a viscosity change along the streamwise direction. The DNS were performed using nek5000, a computational fluid dynamics code developed at Argonne National Laboratory. The channel is divided into three different regions: in the first one, the flow is at a constant Reynolds number of Re = 5000; in the second region, the Reynolds number is imposed to linearly increase as viscosity decreases through a ramp; and finally, in the third region, the flow is again at a constant Reynolds number, this time at Re = 10,000. Since the temperature field is not evaluated, the proposed setup is a simplification of a heated channel. Nevertheless, the outcomes of this study may be valuable for future works considering variable-viscosity effects, especially for cooling and heating applications. Four test cases with different ramp inclinations were analyzed. The results from this study were compared with a correlation available in the literature for the friction Reynolds number as a function of the Reynolds number. We observe that in all cases the ramp does not cause an immediate change in the characteristics of turbulent structures, and a delay is in fact observed in both wall shear and friction. Finally, in order to characterize and understand these effects, streaks from the viscous region and turbulence statistics for the turbulent kinetic energy (TKE) budget terms are analyzed.

References

1.
Leite
,
V. C.
, and
Merzari
,
E.
,
2020
, “
The Effect of Varying Viscosity in Turbulent Channel Flow
,”
ASME
Paper No. FEDSM2020-20228.10.1115/FEDSM2020-20228
2.
Zonta
,
F.
,
Marchioli
,
C.
, and
Soldati
,
A.
,
2012
, “
Modulation of Turbulence in Forced Convection by Temperature-Dependent Viscosity
,”
J. Fluid Mech.
,
697
, pp.
150
174
.10.1017/jfm.2012.67
3.
Zonta
,
F.
,
Onorato
,
M.
, and
Soldati
,
A.
,
2012
, “
Turbulence and Internal Waves in Stably-Stratified Channel Flow With Temperature-Dependent Fluid Properties
,”
J. Fluid Mech.
,
697
, pp.
175
203
.10.1017/jfm.2012.51
4.
Zonta
,
F.
, and
Soldati
,
A.
,
2014
, “
Effect of Temperature Dependent Fluid Properties on Heat Transfer in Turbulent Mixed Convection
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
2
), p.
022501
.10.1115/1.4025135
5.
Koshizuka
,
S.
,
Takano
,
N.
, and
Oka
,
Y.
,
1995
, “
Numerical Analysis of Deterioration Phenomena in Heat Transfer to Supercritical Water
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3077
3084
.10.1016/0017-9310(95)00008-W
6.
Bae
,
J. H.
,
Yoo
,
J. Y.
, and
Choi
,
H.
,
2005
, “
Direct Numerical Simulation of Turbulent Supercritical Flows With Heat Transfer
,”
Phys. Fluids
,
17
(
10
), p.
105104
.10.1063/1.2047588
7.
Govindarajan
,
R.
, and
Sahu
,
K. C.
,
2014
, “
Instabilities in Viscosity-Stratified Flow
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
331
353
.10.1146/annurev-fluid-010313-141351
8.
Leschziner
,
M. A.
,
Choi
,
H.
, and
Choi
,
K.-S.
,
2011
, “
Flow-Control Approaches to Drag Reduction in Aerodynamics: Progress and Prospects
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
369
(
1940
), pp.
1349
1351
.10.1098/rsta.2010.0375
9.
Friederich
,
T.
, and
Kloker
,
M. J.
,
2012
, “
Control of the Secondary Cross-Flow Instability Using Localized Suction
,”
J. Fluid Mech.
,
706
, pp.
470
495
.10.1017/jfm.2012.269
10.
Muppidi
,
S.
, and
Mahesh
,
K.
,
2012
, “
Direct Numerical Simulations of Roughness-Induced Transition in Supersonic Boundary Layers
,”
J. Fluid Mech.
,
693
, pp.
28
56
.10.1017/jfm.2011.417
11.
Zonta
,
F.
, and
Soldati
,
A.
,
2018
, “
Stably Stratified Wall-Bounded Turbulence
,”
ASME Appl. Mech. Rev.
,
70
(
4
), p.
040801
.10.1115/1.4040838
12.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,”
Nucl. Technol.
,
154
(
3
), pp.
283
301
.10.13182/NT06-A3734
13.
Pitla
,
S. S.
,
Robinson
,
D. M.
,
Groll
,
E. A.
, and
Ramadhyani
,
S.
,
1998
, “
Heat Transfer From Supercritical Carbon Dioxide in Tube Flow: A Critical Review
,”
HVACR Res.
,
4
(
3
), pp.
281
301
.10.1080/10789669.1998.10391405
14.
Williamson
,
N.
,
Armfield
,
S.
,
Kirkpatrick
,
M.
, and
Norris
,
S.
,
2015
, “
Transition to Stably Stratified States in Open Channel Flow With Radiative Surface Heating
,”
J. Fluid Mech.
,
766
, pp.
528
555
.10.1017/jfm.2014.711
15.
Wunsch
,
C.
, and
Ferrari
,
R.
,
2004
, “
Vertical Mixing, Energy, and the General Circulation of the Oceans
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
281
314
.10.1146/annurev.fluid.36.050802.122121
16.
He
,
S.
, and
Seddighi
,
M.
,
2013
, “
Turbulence in Transient Channel Flow
,”
J. Fluid Mech.
,
715
, pp.
60
102
.10.1017/jfm.2012.498
17.
Andersson
,
P.
,
Berggren
,
M.
, and
Henningson
,
D. S.
,
1999
, “
Optimal Disturbances and Bypass Transition in Boundary Layers
,”
Phys. Fluids
,
11
(
1
), pp.
134
150
.10.1063/1.869908
18.
Brandt
,
L.
, and
Henningson
,
D. S.
,
2002
, “
Transition of Streamwise Streaks in Zero-Pressure-Gradient Boundary Layers
,”
J. Fluid Mech.
,
472
, pp.
229
261
.10.1017/S0022112002002331
19.
Maruyama
,
T.
,
Kuribayashi
,
T.
, and
Mizushina
,
T.
,
1976
, “
The Structure of the Turbulence in Transient Pipe Flows
,”
J. Chem. Eng. Jpn.
,
9
(
6
), pp.
431
439
.10.1252/jcej.9.431
20.
He
,
S.
, and
Jackson
,
J. D.
,
2000
, “
A Study of Turbulence Under Conditions of Transient Flow in a Pipe
,”
J. Fluid Mech.
,
408
, pp.
1
38
.10.1017/S0022112099007016
21.
Greenblatt
,
D.
, and
Moss
,
E. A.
,
2004
, “
Rapid Temporal Acceleration of a Turbulent Pipe Flow
,”
J. Fluid Mech.
,
514
, pp.
65
75
.10.1017/S0022112004000114
22.
He
,
S.
, and
Seddighi
,
M.
,
2015
, “
Transition of Transient Channel Flow After a Change in Reynolds Number
,”
J. Fluid Mech.
,
764
, pp.
395
427
.10.1017/jfm.2014.698
23.
Kline
,
S. J.
,
Reynolds
,
W. C.
,
Schraub
,
F. A.
, and
Runstadler
,
P. W.
,
1967
, “
The Structure of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
30
(
4
), pp.
741
773
.10.1017/S0022112067001740
24.
Patel
,
V. C.
, and
Head
,
M. R.
,
1968
, “
Reversion of Turbulent to Laminar Flow
,”
J. Fluid Mech.
,
34
(
2
), pp.
371
392
.10.1017/S0022112068001953
25.
Narayanan
,
M. A. B.
, and
Ramjee
,
V.
,
1969
, “
On the Criteria for Reverse Transition in a Two-Dimensional Boundary Layer Flow
,”
J. Fluid Mech.
,
35
(
2
), pp.
225
241
.10.1017/S002211206900108X
26.
Blackwelder
,
R. F.
, and
Kovasznay
,
L. S. G.
,
1972
, “
Large-Scale Motion of a Turbulent Boundary Layer During Relaminarization
,”
J. Fluid Mech.
,
53
(
01
), pp.
61
83
.10.1017/S0022112072000047
27.
Webster
,
D. R.
,
Degraaff
,
D. B.
, and
Eaton
,
J. K.
,
1996
, “
Turbulence Characteristics of a Boundary Layer Over a Two-Dimensional Bump
,”
J. Fluid Mech.
,
320
(
1
), pp.
53
69
.10.1017/S0022112096007458
28.
Muck
,
K. C.
,
Hoffmann
,
P. H.
, and
Bradshaw
,
P.
,
1985
, “
The Effect of Convex Surface Curvature on Turbulent Boundary Layers
,”
J. Fluid Mech.
,
161
(
1
), pp.
347
369
.10.1017/S002211208500297X
29.
Baskaran
,
V.
,
Smits
,
A. J.
, and
Joubert
,
P. N.
,
1987
, “
A Turbulent Flow Over a Curved Hill Part 1. Growth of an Internal Boundary Layer
,”
J. Fluid Mech.
,
182
(
1
), pp.
47
83
.10.1017/S0022112087002246
30.
Fischer
,
P. F.
,
1997
, “
An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
133
(
1
), pp.
84
101
.10.1006/jcph.1997.5651
31.
Fischer
,
P.
,
Lottes
,
J.
,
Kerkemeier
,
S.
,
Marin
,
O.
,
Heisey
,
K.
,
Obabko
,
A.
,
Merzari
,
E.
, and
Peet
,
Y.
,
2015
, “
Nek5000: Users Manual
,” Argonne National Laboratory, Lemont, IL, Technical Report No. ANL/MCS-TM-351.
32.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
(
3
), pp.
468
488
.10.1016/0021-9991(84)90128-1
33.
Merzari
,
E.
,
Pointer
,
W.
, and
Fischer
,
P.
,
2013
, “
Numerical Simulation and Proper Orthogonal Decomposition of the Flow in a Counter-Flow T-Junction
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091304
.10.1115/1.4024059
34.
Dillon
,
S.
,
Obabko
,
A.
,
Tomboulides
,
A.
,
Leite
,
V. C.
,
Lan
,
Y. H.
,
Min
,
M.
,
Fischer
,
P.
, and
Boyd
,
C.
,
2020
, “
Nek5000 Developments in Support of Industry and the NRC
,” Argonne National Laboratory, Lemont, IL, Technical Report No.
ANL/NSE-20/48
.https://publications.anl.gov/anlpubs/2021/01/163201.pdf
35.
Lee
,
M.
, and
Moser
,
R. D.
,
2015
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ5200
,”
J. Fluid Mech.
,
774
, pp.
395
415
.10.1017/jfm.2015.268
36.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
New York
.
37.
Oppenheim
,
A. V.
,
2011
, “
Signals and Systems. On MIT OpenCourseWare
,” Massachusetts Institute of Technology: MIT OpenCourseWare, accessed Sept. 23, 2021, http://ocw.mit.edu
38.
Kaoru Iwamoto
,
Y.
, and
Suzuki
,
N. K.
,
2002
, “
Database of Fully Developed Channel Flow
,” Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan, THTLAB Internal Report No. ILR-0201.
39.
Fernholz
,
H.
, and
Finleyt
,
P.
,
1996
, “
The Incompressible Zero-Pressure-Gradient Turbulent Boundary Layer: An Assessment of the Data
,”
Prog. Aerosp. Sci.
,
32
(
4
), pp.
245
311
.10.1016/0376-0421(95)00007-0
40.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Boundary-Layer Theory
, Springer, Berlin.
41.
Johnston
,
J. P.
,
1973
, “
The Suppression of Shear Layer Turbulence in Rotating Systems
,”
ASME J. Fluids Eng.
,
95
(
2
), pp.
229
235
.10.1115/1.3446997
42.
Carlier
,
J.
, and
Stanislas
,
M.
,
2005
, “
Experimental Study of Eddy Structures in a Turbulent Boundary Layer Using Particle Image Velocimetry
,”
J. Fluid Mech.
,
535
, pp.
143
188
.10.1017/S0022112005004751
You do not currently have access to this content.