Abstract

In a prior study, the novel shroud−chimney configuration (SCC) (semicircular shrouds and expended chimney) has been numerically demonstrated to passively augment natural convection heat transfer from a horizontal cylinder. However, to implement such a configuration for practical utilizations, the heat flow properties must be experimentally observed and understood. In this work, a controlled experiment is carried out to validate the impact of SCC on heat transfer from a horizontal cylinder subjected to a constant measured heat flux at its inner surface. Circumferential temperature measurements at the cylinder surface, shrouds, and ambient are achieved using thermocouples. The emissivity of the cylinder is measured and utilized to estimate radiation heat loss from the cylinder surface. All presented cases are numerically simulated for validation. The measured and numerically predicted cylinder surface temperatures are within 2% agreement. Moreover, the experimentally and numerically estimated Nusselt numbers agree to within 4%, which verifies the developed correlations for enhanced convection. Finally, a parametric study is presented to show the optimum range of design parameters for the best SCC performance. A newly defined term “effective flow rate” is quantified and correlated to the optimum location of the shroud relative to the cylinder. Several SCC design correlations resulted from the analysis.

References

1.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
, and
Ganji
,
D. D.
,
2015
, “
Review of Heat Transfer Enhancement Methods: Focus on Passive Methods Using Swirl Flow Devices
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
444
469
..10.1016/j.rser.2015.04.113
2.
Gad-el-Hak
,
M.
,
2000
,
Flow Control: Passive, Active, and Reactive Flow Management
,
Cambridge University Press
,
London
.
3.
Ayrton
,
W.
, and
Kilgour
,
H.
,
1892
, “
The Thermal Emissivity of Thin Wires in Air
,”
Philos. Trans. R. Soc. London. A
,
183
, pp.
371
405
.10.1098/rspl.1891.0022
4.
Kennelly
,
A. E.
,
Wright
,
C. A.
, and
Van Bylevelt
,
J. S.
,
1909
, “
The Convection of Heat From Small Copper Wires
,”
Proc. Am. Inst. Electr. Eng.
,
28
(
7
), pp.
699
729
.10.1109/PAIEE.1909.6660039
5.
Wamsler
,
F.
,
1911
, “
Die Wärmeabgabe Geheizter Körper an Luft
,”
Forsch. Geb. Ingenieurwes.
, (
98/99
), pp.
1
45
.
6.
Langmuir
,
I.
,
1912
, “
The Convection and Conduction of Heat in Gases
,”
Trans. Am. Inst. Electr. Eng.
,
XXXI
(
1
), pp.
1229
1240
.10.1109/T-AIEE.1912.4768478
7.
Nusselt
,
W.
,
1929
, “
Die Wärmeübgabe Eines Waagrecht Liegenden Drahtes Oder Rohres in Flüssigkeiten Und Gasen
,”
Z. Vereins Dtsch. Ing.
,
73
, pp.
1475
1478
.
8.
Ackermann
,
G.
,
1932
, “
Die Wärmeabgabe Eines Horizontalen Geheizten Rohres an Kaltes Wasser Bei Natürlicher Konvektion
,”
Forsch. Dem Gebiete Ing.
,
3
(
1
), pp.
42
50
.10.1007/BF02716936
9.
Hermann
,
R.
,
1936
, “
Wärmeübergang Bei Freier Strömung Am Waagerechten Zylinder in Zweiatomigen Gasen
,”
Verein Dtsch. Ing. Forschung.
, (
379
), pp.
1
24
.
10.
Morgan
,
V. T.
,
1975
, “
The Overall Convective Heat Transfer From Smooth Circular Cylinders
,”
Adv. Heat Transfer
,
11
(
C
), pp.
199
264
.10.1016/S0065-2717(08)70075-3
11.
Wilks
,
G.
,
1972
, “
External Natural Convection About Two-Dimensional Bodies With Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
351
354
.10.1016/0017-9310(72)90080-4
12.
Churchill
,
S. W.
,
1974
, “
Laminar Free Convection From a Horizontal Cylinder With a Uniform Heat Flux Density
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
109
111
.10.1016/0094-4548(74)90146-5
13.
Saville
,
D. A.
, and
Churchill
,
S. W.
,
1967
, “
Laminar Free Convection in Boundary Layers Near Horizontal Cylinders and Vertical Axisymmetric Bodies
,”
J. Fluid Mech.
,
29
(
2
), pp.
391
399
.10.1017/S0022112067000904
14.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1049
1053
.10.1016/0017-9310(75)90222-7
15.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1976
, “
Correlating Equations for Natural Convection Heat Transfer Between Horizontal Circular Cylinders
,”
Int. J. Heat Mass Transfer
,
19
(
10
), pp.
1127
1134
.10.1016/0017-9310(76)90145-9
16.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1980
, “
Numerical Solution to the Navier-Stokes Equations for Laminar Natural Convection About a Horizontal Isothermal Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
23
(
7
), pp.
971
979
.10.1016/0017-9310(80)90071-X
17.
Qureshi
,
Z. H.
, and
Ahmad
,
R.
,
1987
, “
Natural Convection From a Uniform Heat Flux Horizontal Cylinder at Moderate Rayleigh Numbers
,”
Numer. Heat Transfer
,
11
(
2
), pp.
199
212
.10.1080/10407788708913550
18.
Wang
,
P.
,
Kahawita
,
R.
, and
Nguyen
,
T. H.
,
1990
, “
Numerical Computation of the Natural Convection Flow About a Horizontal Cylinder Using Splines
,”
Numer. Heat Transf. Part A Appl.
,
17
(
2
), pp.
191
215
.10.1080/10407789008944739
19.
Saitoh
,
T.
,
Sajiki
,
T.
, and
Maruhara
,
K.
,
1993
, “
Bench Mark Solutions to Natural Convection Heat Transfer Problem Around a Horizontal Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
36
(
5
), pp.
1251
1259
.10.1016/S0017-9310(05)80094-8
20.
Kuehner
,
J. P.
,
Hamed
,
A. M.
, and
Mitchell
,
J. D.
,
2015
, “
Experimental Investigation of the Free Convection Velocity Boundary Layer and Plume Formation Region for a Heated Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
82
, pp.
78
97
.10.1016/j.ijheatmasstransfer.2014.10.055
21.
Bhowmik
,
H.
,
Gharibi
,
A.
,
Yaarubi
,
A.
, and
Alawi
,
N.
,
2019
, “
Transient Natural Convection Heat Transfer Analyses From a Horizontal Cylinder
,”
Case Stud. Therm. Eng.
,
14
, p.
100422
.10.1016/j.csite.2019.100422
22.
Pelletier
,
Q.
,
Murray
,
D. B.
, and
Persoons
,
T.
,
2016
, “
Unsteady Natural Convection Heat Transfer From a Pair of Vertically Aligned Horizontal Cylinders
,”
Int. J. Heat Mass Transfer
,
95
, pp.
693
708
.10.1016/j.ijheatmasstransfer.2015.12.041
23.
Cho
,
H. W.
,
Seo
,
Y. M.
,
Mun
,
G. S.
,
Ha
,
M. Y.
, and
Park
,
Y. G.
,
2017
, “
The Effect of Instability Flow for Two-Dimensional Natural Convection in a Square Enclosure With Different Arrays of Two Inner Cylinders
,”
Int. J. Heat Mass Transfer
,
114
, pp.
307
317
.10.1016/j.ijheatmasstransfer.2017.06.080
24.
Rath
,
S.
, and
Dash
,
S. K.
,
2020
, “
Numerical Study of Laminar and Turbulent Natural Convection From a Stack of Solid Horizontal Cylinders
,”
Int. J. Therm. Sci.
,
148
, p.
106147
.10.1016/j.ijthermalsci.2019.106147
25.
Rath
,
S.
, and
Dash
,
S. K.
,
2019
, “
Numerical Investigation of Natural Convection Heat Transfer From a Stack of Horizontal Cylinders
,”
ASME J. Heat Transfer
,
141
(
1
), p. 012501.10.1115/1.4040954
26.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2020
, “
Combined Effect of Turbulent Natural Convection and Radiation From a Horizontal Cylinder
,”
J. Thermophys. Heat Transfer
,
34
(
4
), pp.
759
768
.10.2514/1.T5994
27.
Molla
,
M. M.
,
Hossain
,
M. A.
, and
Gorla
,
R. S. R.
,
2005
, “
Natural Convection Flow From an Isothermal Horizontal Circular Cylinder With Temperature Dependent Viscosity
,”
Heat Mass Transfer
,
41
(
7
), pp.
594
598
.10.1007/s00231-004-0576-7
28.
Liao
,
C.-C.
, and
Lin
,
C.-A.
,
2015
, “
Influence of Prandtl Number on the Instability of Natural Convection Flows Within a Square Enclosure Containing an Embedded Heated Cylinder at Moderate Rayleigh Number
,”
Phys. Fluids
,
27
(
1
), p.
013603
.10.1063/1.4906181
29.
Gupta
,
A. S.
, and
Pop
,
I.
,
1977
, “
Effects of Curvature on Unsteady Free Convection Past a Circular Cylinder
,”
Phys. Fluids
,
20
(
1
), p.
162
.10.1063/1.861705
30.
Acharya
,
S.
, and
Dash
,
S. K.
,
2017
, “
Natural Convection Heat Transfer From a Short or Long, Solid or Hollow Horizontal Cylinder Suspended in Air or Placed on Ground
,”
ASME J. Heat Transfer
,
139
(
7
), p.
072501
.10.1115/1.4035919
31.
Ashjaee
,
M.
,
Bigham
,
S.
, and
Yazdani
,
S.
,
2014
, “
A Numerical Study on Natural Convention Heat Transfer From a Horizontal Isothermal Cylinder Located Underneath an Adiabatic Ceiling
,”
Heat Transfer Eng.
,
35
(
10
), pp.
953
962
.10.1080/01457632.2014.859878
32.
Sebastian
,
G.
, and
Shine
,
S. R.
,
2015
, “
Natural Convection From Horizontal Heated Cylinder With and Without Horizontal Confinement
,”
Int. J. Heat Mass Transfer
,
82
, pp.
325
334
.10.1016/j.ijheatmasstransfer.2014.11.063
33.
Liu
,
J.
,
Liu
,
H.
,
Zhen
,
Q.
, and
Lu
,
W.-Q.
,
2017
, “
Numerical Investigation of the Laminar Natural Convection Heat Transfer From Two Horizontally Attached Horizontal Cylinders
,”
Int. J. Heat Mass Transfer
,
104
, pp.
517
532
.10.1016/j.ijheatmasstransfer.2016.08.075
34.
Liu
,
J.
,
Liu
,
H.
,
Zhen
,
Q.
, and
Lu
,
W.-Q.
,
2017
, “
Laminar Natural Convection Heat Transfer From a Pair of Attached Horizontal Cylinders Set in a Vertical Array
,”
Appl. Therm. Eng.
,
115
, pp.
1004
1019
.10.1016/j.applthermaleng.2017.01.029
35.
Al-Mahroom
,
F. G. F.
,
2000
, “
Natural Convection Heat Transfer From a Horizontal Cylinder Placed in a Square Vented Enclosure
,” Master thesis,
University of Mosul
,
Mosul, Iraq
.
36.
Kim
,
B. S.
,
Lee
,
D. S.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2008
, “
A Numerical Study of Natural Convection in a Square Enclosure With a Circular Cylinder at Different Vertical Locations
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1888
1906
.10.1016/j.ijheatmasstransfer.2007.06.033
37.
Kahwaji
,
G. Y.
,
Hussien
,
A. S.
, and
Ali
,
O. M.
,
2011
, “
Numerical Investigation of Natural Convection Heat Transfer From Square Cylinder in a Vented Enclosure
,”
Appl. Mech. Mater.
,
110–116
, pp.
4451
4464
.10.4028/www.scientific.net/AMM.110-116.4451
38.
Ghaddar
,
N. K.
,
1996
, “
Natural Convection Over Rotating Cylindrical Heat Source in an Enclosure
,”
J. Thermophys. Heat Transfer
,
10
(
2
), pp.
303
311
.10.2514/3.788
39.
Prax
,
C.
, and
Sadat
,
H.
,
2011
, “
Thermomagnetic Convection Around a Hot Circular Cylinder in a Square Cold Enclosure
,”
J. Thermophys. Heat Transfer
,
25
(
2
), pp.
291
297
.10.2514/1.50639
40.
Lee
,
J. R.
,
Ha
,
M. Y.
,
Balachandar
,
S.
,
Yoon
,
H. S.
, and
Lee
,
S. S.
,
2004
, “
Natural Convection in a Horizontal Layer of Fluid With a Periodic Array of Square Cylinders in the Interior
,”
Phys. Fluids
,
16
(
4
), pp.
1097
1117
.10.1063/1.1649989
41.
Chandra Roy
,
N.
,
2019
, “
Flow and Heat Transfer Characteristics of a Nanofluid Between a Square Enclosure and a Wavy Wall Obstacle
,”
Phys. Fluids
,
31
(
8
), p.
082005
.10.1063/1.5111517
42.
Ali
,
O. M.
, and
Kahwaji
,
G. Y.
,
2014
, “
Numerical Investigation of Natural Convection Heat Transfer From Circular Cylinder Inside an Enclosure Using Different Types of Nanofluids
,”
Int. J. Mech. Eng. Technol.
,
5
(
5
), pp.
214
236
.http://www.iaeme.com/Ijmet/issues.asp?JType=IJMET&VType=5&IType=5
43.
Ali
,
O. M.
, and
Kahwaji
,
G. Y.
,
2015
, “
Numerical Investigation of Natural Convection Heat Transfer From Square Cylinder in an Enclosed Enclosure Filled With Nanofluids
,”
Int. J. Recent Adv. Mech. Eng.
,
4
(
4
), pp.
1
17
.10.14810/ijmech.2015.4401
44.
Jalan
,
P.
,
Vyas
,
A.
, and
Srivastava
,
A.
,
2017
, “
Nonintrusive Diagnostics of Nanofluids-Based Natural Convection Heat Transfer Over a Heated Cylinder
,”
J. Thermophys. Heat Transfer
,
31
(
3
), pp.
674
685
.10.2514/1.T5047
45.
Prasad
,
V. R.
,
Gaffar
,
S. A.
, and
Bég
,
O. A.
,
2015
, “
Heat and Mass Transfer of Nanofluid From Horizontal Cylinder to Micropolar Fluid
,”
J. Thermophys. Heat Transfer
,
29
(
1
), pp.
127
139
.10.2514/1.T4396
46.
Roy
,
N. C.
,
2018
, “
Natural Convection of Nanofluids in a Square Enclosure With Different Shapes of Inner Geometry
,”
Phys. Fluids
,
30
(
11
), p.
113605
.10.1063/1.5055663
47.
Sparrow
,
E. M.
, and
Bahrami
,
P. A.
,
1980
, “
Experiments on Natural Convection Heat Transfer on the Fins of a Finned Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
23
(
11
), pp.
1555
1560
.10.1016/0017-9310(80)90159-3
48.
Chen
,
H.-T.
, and
Chou
,
J.-C.
,
2006
, “
Investigation of Natural-Convection Heat Transfer Coefficient on a Vertical Square Fin of Finned-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3034
3044
.10.1016/j.ijheatmasstransfer.2006.02.009
49.
Hahne
,
E.
, and
Zhu
,
D.
,
1994
, “
Natural Convection Heat Transfer on Finned Tubes in Air
,”
Int. J. Heat Mass Transfer
,
37
(
Suppl. 1
), pp.
59
63
.10.1016/0017-9310(94)90009-4
50.
Kang
,
H. C.
, and
Chang
,
S.-M.
,
2017
, “
The Correlation of Heat Transfer Coefficients for the Laminar Natural Convection in a Circular Finned-Tube Heat Exchanger
,”
ASME J. Heat Transfer
,
140
(
3
), p.
031801
.10.1115/1.4038189
51.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2016
, “
Numerical Investigation of Natural Convection Heat Transfer Over Annular Finned Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
96
, pp.
330
345
.10.1016/j.ijheatmasstransfer.2016.01.024
52.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2017
, “
Three-Dimensional Numerical Investigation of Thermodynamic Performance Due to Conjugate Natural Convection From Horizontal Cylinder With Annular Fins
,”
ASME J. Heat Transfer
,
139
(
8
), p.
082501
.10.1115/1.4035968
53.
An
,
B. H.
,
Kim
,
H. J.
, and
Kim
,
D.-K.
,
2012
, “
Nusselt Number Correlation for Natural Convection From Vertical Cylinders With Vertically Oriented Plate Fins
,”
Exp. Therm. Fluid Sci.
,
41
, pp.
59
66
.10.1016/j.expthermflusci.2012.03.010
54.
Shen
,
Q.
,
Sun
,
D.
,
Xu
,
Y.
,
Jin
,
T.
,
Zhao
,
X.
,
Zhang
,
N.
,
Wu
,
K.
, and
Huang
,
Z.
,
2016
, “
Natural Convection Heat Transfer Along Vertical Cylinder Heat Sinks With Longitudinal Fins
,”
Int. J. Therm. Sci.
,
100
, pp.
457
464
.10.1016/j.ijthermalsci.2015.09.007
55.
Park
,
K. T.
,
Kang
,
B.
,
Kim
,
H. J.
, and
Kim
,
D.-K.
,
2013
, “
Experimental Study on Natural Convection From Vertical Cylinders With Branched Fins
,”
ASME Paper No. IMECE2013-64353
.10.1115/IMECE2013-64353
56.
A/K Abu-Hijleh
,
B.
,
2003
, “
Enhanced Forced Convection Heat Transfer From a Cylinder Using Permeable Fins
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
804
811
.10.1115/1.1599371
57.
Al-Sarrach
,
H. M. S.
,
Kahwaji
,
G. Y.
, and
Samaha
,
M. A.
,
2017
, “
Modeling Coupled Conduction–Convection Ice Formation on Horizontal Axially Finned and Unfinned Tubes
,”
ASME J. Fluids Eng.
,
139
(
12
), p.
121101
.10.1115/1.4037279
58.
Navarro
,
L.
,
de Gracia
,
A.
,
Colclough
,
S.
,
Browne
,
M.
,
McCormack
,
S. J.
,
Griffiths
,
P.
, and
Cabeza
,
L. F.
,
2016
, “
Thermal Energy Storage in Building Integrated Thermal Systems: A Review. Part 1—Active Storage Systems
,”
Renewable Energy
,
88
, pp.
526
547
.10.1016/j.renene.2015.11.040
59.
Rainieri
,
S.
,
Bozzoli
,
F.
,
Cattani
,
L.
, and
Pagliarini
,
G.
,
2013
, “
Compound Convective Heat Transfer Enhancement in Helically Coiled Wall Corrugated Tubes
,”
Int. J. Heat Mass Transfer
,
59
(
1
), pp.
353
362
.10.1016/j.ijheatmasstransfer.2012.12.037
60.
Kumar
,
A.
,
Joshi
,
J. B.
,
Nayak
,
A. K.
, and
Vijayan
,
P. K.
,
2014
, “
3D CFD Simulation of Air Cooled Condenser-I: Natural Convection Over a Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
78
, pp.
1265
1283
.10.1016/j.ijheatmasstransfer.2014.07.030
61.
Atayılmaz
,
Ş. Ö.
, and
Teke
,
İ.
,
2009
, “
Experimental and Numerical Study of the Natural Convection From a Heated Horizontal Cylinder
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
731
738
.10.1016/j.icheatmasstransfer.2009.03.017
62.
Amini
,
M.
,
Pishevar
,
A. R.
, and
Yaghoubi
,
M.
,
2014
, “
Experimental Study of Frost Formation on a Fin-and-Tube Heat Exchanger by Natural Convection
,”
Int. J. Refrig.
,
46
, pp.
37
49
.10.1016/j.ijrefrig.2014.06.015
63.
Sadeghipour
,
M. S.
, and
Razi
,
Y. P.
,
2001
, “
Natural Convection From a Confined Horizontal Cylinder: The Optimum Distance Between the Confining Walls
,”
Int. J. Heat Mass Transfer
,
44
(
2
), pp.
367
374
.10.1016/S0017-9310(00)00110-1
64.
Atmane
,
M. A.
,
Chan
,
V. S. S.
, and
Murray
,
D. B.
,
2003
, “
Natural Convection Around a Horizontal Heated Cylinder: The Effects of Vertical Confinement
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3661
3672
.10.1016/S0017-9310(03)00154-6
65.
Clifford
,
C. E.
, and
Kimber
,
M. L.
,
2014
, “
Optimizing Laminar Natural Convection for a Heat Generating Cylinder in a Channel
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112502
.10.1115/1.4028492
66.
Kahwaji
,
G. Y.
, and
Samaha
,
M. A.
,
2019
, “
Passive Natural Convection Augmentation From Horizontal Cylinder Using a Novel Shroud–Chimney Configuration
,”
J. Thermophys. Heat Transfer
,
33
(
4
), pp.
1006
1017
.10.2514/1.T5686
67.
ANSYS
,
2015
, ANSYS FLUENT Theory Guide, Release 16.0,
ANSYS
,
Canonsburg, PA
.
68.
Milani Shirvan
,
K.
,
Mamourian
,
M.
,
Mirzakhanlari
,
S.
,
Rahimi
,
A. B.
, and
Ellahi
,
R.
,
2017
, “
Numerical Study of Surface Radiation and Combined Natural Convection Heat Transfer in a Solar Cavity Receiver
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
10
), pp.
2385
2399
.10.1108/HFF-10-2016-0419
69.
Sutherland
,
W.
,
1893
, “
LII. The Viscosity of Gases and Molecular Force
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
36
(
223
), pp.
507
531
.10.1080/14786449308620508
70.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
You do not currently have access to this content.