Abstract

Enhanced longitudinal heat transfer in viscous, laminar, single-phase, oscillatory channel flow is investigated in this paper. Kurzweg (ASME J. Heat Transfer-Trans. ASME. 107, 1985) analyzed this case theoretically and derived a correlation for a nondimensionalized effective thermal conductivity in terms of Prandtl and Womersley numbers. The present investigation contributes analysis of limiting cases and physical interpretation to the results of Kurzweg. A simplified model with isothermal walls is proposed, applicable if working fluid and channel wall material exhibit sufficiently large differences in thermal inertia. Examined over a wide range of Womersley numbers, this model reveals six distinct regimes characterized by the Prandtl number of the fluid. The respective thickness of hydrodynamic and thermal boundary layers relative to the channel width is relevant in this context. Maximum effective thermal conductivity is attained when the thermal boundary layer expands over the full channel width. The influence of Womersley number is discussed and explained in terms of the interplay of hydrodynamic and thermal flow characteristics. These patterns reveal either quasi-steady parabolic or oscillating bulk characteristics. The importance of the thermal boundary layer thickness motivates the introduction of a new nondimensional group, making it easier to classify the various regimes of enhanced longitudinal heat transfer.

References

1.
Chatwin
,
P. C.
,
1975
, “
On the Longitudinal Dispersion of a Passive Contaminant in Oscillatory Flows in Tubes
,”
J. Fluid Mech.
,
71
(
3
), pp.
513
527
.10.1017/S0022112075002716
2.
Jaeger
,
M. J.
, and
Kurzweg
,
U. H.
,
1983
, “
Determination of the Longitudinal Dispersion Coefficient in Flows Subjected to High-Frequency Oscillations
,”
Phys. Fluids
,
26
(
6
), p.
1380
.10.1063/1.864323
3.
Watson
,
E. J.
,
1983
, “
Diffusion in Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
133
, pp.
233
244
.10.1017/S0022112083001883
4.
Joshi
,
C. H.
,
Kamm
,
R. D.
,
Drazen
,
J. M.
, and
Slutsky
,
A. S.
,
1983
, “
An Experimental Study of Gas Exchange in Laminar Oscillatory Flow
,”
J. Fluid Mech.
,
133
, pp.
245
254
.10.1017/S0022112083001895
5.
Kurzweg
,
U. H.
,
1985
, “
Enhanced Heat Conduction in Fluids Subjected to Sinusoidal Oscillations
,”
ASME Int. J. Heat Transfer
,
107
(
2
), pp.
459
462
.10.1115/1.3247437
6.
Kurzweg
,
U.
, and
de Zhao
,
L.
,
1984
, “
Heat Transfer by High-Frequency Oscillations: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities
,”
Phys. Fluids
,
27
(
11
), pp.
2624
2627
.10.1063/1.864563
7.
Kurzweg
,
U. H.
,
1985
, “
Enhanced Heat Conduction in Oscillating Viscous Flows Within Parallel-Plate Channels
,”
J. Fluid Mech.
,
156
(
1
), pp.
291
300
.10.1017/S0022112085002105
8.
Kaviany
,
M.
,
1986
, “
Some Aspects of Enhanced Heat Diffusion in Fluids by Oscillation
,”
Int. J. Heat Mass Transfer
,
29
(
12
), pp.
2002
2006
.10.1016/0017-9310(86)90022-0
9.
Kaviany
,
M.
,
1990
, “
Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Analysis
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
1
), pp.
49
55
.10.1115/1.2910363
10.
Kaviany
,
M.
, and
Reckker
,
M.
,
1990
, “
Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Experiment
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
1
), pp.
56
63
.10.1115/1.2910364
11.
Nishio
,
S.
,
Shi
,
X.-H.
, and
Zhang
,
W.-M.
,
1995
, “
Oscillation-Induced Heat Transport: Heat Transport Characteristics Along Liquid-Columns of Oscillation-Controlled Heat Transport Tubes
,”
Int. J. Heat Mass Transfer
,
38
(
13
), pp.
2457
2470
.10.1016/0017-9310(94)00372-3
12.
Inaba
,
T.
,
Morita
,
G.
, and
Saitoh
,
K-I.
,
2004
, “
Longitudinal Heat Transfer Enhanced by Fluid Oscillation in a Circular Pipe With Conductive Wall
,”
Heat Transfer Asian Res.
,
33
(
2
), pp.
129
139
.10.1002/htj.10126
13.
Puvaneswari
,
P.
,
Department of Mathematics, Amrita Vishwa Vidya Peetham Coimbatore, India.
, and
Shailendhra
,
K.
,
2018
, “
A Dramatic Enhancement of Heat Transfer in Dream Pipe With Viscoelastic Fluids
,”
J. Appl. Fluid Mech.
,
11
(
3
), pp.
621
635
.10.29252/jafm.11.03.27836
14.
van Buren
,
S.
, and
Polifke
,
W.
,
2021
, “
Heat Transfer in Pulsating Flow and Its Impact on Temperature Distribution and Damping Performance of Resonators
,”
Future Space-Transport-System Components Under High Thermal and Mechanical Load
s (no. 146 in Notes on Numerical Fluid Mechanics and Multidisciplinary Design),
W.
Schröder
,
N. A.
Adams
,
O. J.
Haidn
,
R.
Radespiel
,
T.
Sattelmayer
,
W.
Schröder
, and
B.
Weigand
, eds.,
Springer International Publishing
, Munich, Germany, pp.
97
111
.
15.
van Buren
,
S.
,
Cárdenas Miranda
,
A.
, and
Polifke
,
W.
,
2019
, “
Large Eddy Simulation of Enhanced Heat Transfer in Pulsatile Turbulent Channel Flow
,”
Int. J. Heat Mass Transfer
,
144
, p.
118585
.10.1016/j.ijheatmasstransfer.2019.118585
16.
van Buren
,
S.
,
Förner
,
K.
, and
Polifke
,
W.
,
2017
, “
Analytical and Numerical Investigation of the Damping Behavior of a Quarter-Wave Resonator With Temperature Inhomogeneity
,”
C.
Stemmer
,
N. A.
Adams
,
O. J.
Haidn
,
R.
Radespiel
,
T.
Sattelmayer
,
W.
Schröder
, and
B.
Weigand
, eds.
Sonderforschungsbereich/Transregio 40
, Annual Report SFB/TRR40, pp.
35
47
.
17.
Cárdenas Miranda
,
A.
, and
Polifke
,
W.
,
2014
, “
Combustion Stability Analysis of Rocket Engines With Resonators Based on Nyquist Plots
,”
J. Propul. Power
,
30
(
4
), pp.
962
977
.10.2514/1.B35149
18.
Förner
,
K.
,
Cárdenas Miranda
,
A.
, and
Polifke
,
W.
,
2015
, “
Mapping the Influence of Acoustic Resonators on Rocket Engine Combustion Stability
,”
J. Propul. Power
,
31
(
4
), pp.
1159
1166
.10.2514/1.B35660
19.
Miura
,
M.
,
Nagasaki
,
T.
, and
Ito
,
Y.
,
2017
, “
Experimental Investigation of Heat Transport With Oscillating Liquid Column in Pulsating Heat Pipe Using Forced Oscillation System
,”
Int. J. Heat Mass Transfer
,
106
, pp.
997
1004
.10.1016/j.ijheatmasstransfer.2016.10.069
20.
Miura
,
M.
,
Nagasaki
,
T.
, and
Ito
,
Y.
,
2019
, “
Experimental Study on Heat Transport Induced by Phase Changes Associated With Liquid Column Oscillation in Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
133
, pp.
652
661
.10.1016/j.ijheatmasstransfer.2018.12.081
21.
van Buren
,
S.
, and
Polifke
,
W.
,
2019
, “
Enhanced Longitudinal Heat Transfer in Turbulent Oscillatory Channel Flow
,” In
C.
Stemmer
,
N. A.
Adams
,
O. J.
Haidn
,
R.
Radespiel
,
T.
Sattelmayer
,
W.
Schröder
, and
B.
Weigand
, eds.
Sonderforschungsbereich/Transregio 40
, Annual Report SFB/TRR40, pp.
35
48
.
22.
van Buren
,
S.
, and
Polifke
,
W.
,
2021
, “
Turbulence-Induced Enhancement of Longitudinal Heat Transfer in Oscillatory Channel Flow
,”
Int. J. Heat Fluid Flow
(submitted to).
You do not currently have access to this content.