Abstract

Liquid–gas–solid three-phase flows in hydrocyclones are studied numerically in this paper by employing a coupled method of the volume of fluid (VOF) and discrete element model (DEM) with Reynolds stress model (RSM) turbulence model. The numerical method is validated by comparing the calculated results to those of experiments published in the literature about the separation of particle flows in hydrocyclones. Since VOF-DEM model could capture the gas–liquid interface of particle flows, the three-dimensional formation process of the air-core together with the formation of the spiral trajectory of particles are depicted for the first time. In addition, the effects of the particle concentration ω (less than 12%) on the air-core formation time Tf and diameter Da are studied systematically, which has not been reported in the literature. The increase of ω has both positive and negative actions on the change of Tf and Da, and the compromises of two kinds of actions generate the valley or peak of the curves of Tf versus ω and Da versus ω, respectively. Moreover, the results for three hydrocyclones with different cone angles are also compared to study the effects of the cylindrical and conical section on the air-core formation and the separation performance of the hydrocyclones. By analyzing the flow fields and the pressure changes inside the hydrocyclones, qualitative explanations of the relevant discoveries are given in this paper. The results will be helpful in the investigation of the multiphase flow behaviors in the hydrocyclone and in the selection of the appropriate hydrocyclone.

References

1.
Bhaskar
,
K. U.
,
Murthy
,
Y. R.
,
Raju
,
M. R.
,
Tiwari
,
S.
,
Srivastava
,
J. K.
, and
Ramakrishnan
,
N.
,
2007
, “
CFD Simulation and Experimental Validation Studies on Hydrocyclone
,”
Min. Eng.
,
20
(
1
), pp.
60
71
.10.1016/j.mineng.2006.04.012
2.
Cullivan
,
J. C.
,
Williams
,
R. A.
,
Dyakowski
,
T.
, and
Cross
,
C. R.
,
2004
, “
New Understanding of a Hydrocyclone Flow Field and Separation Mechanism from Computational Fluid Dynamics
,”
Min. Eng.
,
17
(
5
), pp.
651
660
.10.1016/j.mineng.2004.04.009
3.
Liu
,
Y.
,
Cheng
,
Q.
,
Zhang
,
B.
, and
Tian
,
F.
,
2015
, “
Three-Phase Hydrocyclone Separator – A Review
,”
Chem. Eng. Res. Des.
,
100
, pp.
554
560
.10.1016/j.cherd.2015.04.026
4.
Edward Mohamed Hadji
,
B. F.
,
Ayob
,
A.
,
Hafiz Muhammad
,
B.
, and
Jingtao
,
W.
,
2020
, “
Sponge-Based Materials for Oil Spill Cleanups: A Review
,”
Front. Chem. Sci. Eng.
,
14
(
5
), pp.
749
762
.10.1007/s11705-019-1890-4
5.
Mao
,
H.
,
Qiu
,
Z.
,
Shen
,
Z.
, and
Huang
,
W.
,
2015
, “
Hydrophobic Associated Polymer Based Silica Nanoparticles Composite With Core–Shell Structure as a Filtrate Reducer for Drilling Fluid at Ultra-High Temperature
,”
J. Pet. Sci. Eng.
,
129
, pp.
1
14
.10.1016/j.petrol.2015.03.003
6.
Wang
,
B.
,
Chu
,
K. W.
, and
Yu
,
A. B.
,
2007
, “
Numerical Study of Particle−Fluid Flow in a Hydrocyclone
,”
Ind. Eng. Chem. Res.
,
46
(
13
), pp.
4695
4705
.10.1021/ie061625u
7.
Kuang
,
S.
,
Chu
,
K.
,
Yu
,
A.
, and
Vince
,
A.
,
2012
, “
Numerical Study of Liquid-Gas-Solid Flow in Classifying Hydrocyclones: Effect of Feed Solids Concentration
,”
Min. Eng.
,
31
, pp.
17
31
.10.1016/j.mineng.2012.01.003
8.
Chu
,
L.-Y.
,
Chen
,
W.-M.
, and
Lee
,
X.-Z.
,
2002
, “
Effects of Geometric and Operating Parameters and Feed Characters on the Motion of Solid Particles in Hydrocyclones
,”
Separ. Purif. Technol.
,
26
(
2
), pp.
237
246
.10.1016/S1383-5866(01)00171-X
9.
Dai
,
G. Q.
,
Chen
,
W. M.
,
Li
,
J. M.
, and
Chu
,
L. Y.
,
1999
, “
Experimental Study of Solid–Liquid Two-Phase Flow in a Hydrocyclone
,”
Chem. Eng. J.
,
74
(
3
), pp.
211
216
.10.1016/S1385-8947(99)00043-1
10.
Zhang
,
Y.
,
Qian
,
P.
,
Liu
,
Y.
, and
Wang
,
H.
,
2011
, “
Experimental Study of Hydrocyclone Flow Field with Different Feed Concentration
,”
Ind. Eng. Chem. Res.
,
50
(
13
), pp.
8176
8184
.10.1021/ie100210c
11.
Monredon
,
T. C.
,
Hsieh
,
K. T.
, and
Rajamani
,
R. K.
,
1992
, “
Fluid Flow Model of the Hydrocyclone: an Investigation of Device Dimensions
,”
Int. J. Min. Proc.
,
35
(
1
), pp.
65
83
.10.1016/0301-7516(92)90005-H
12.
Davailles
,
A.
,
Climent
,
E.
, and
Bourgeois
,
F.
,
2012
, “
Fundamental Understanding of Swirling Flow Pattern in Hydrocyclones
,”
Separ. Purif. Technol.
,
92
, pp.
152
160
.10.1016/j.seppur.2011.12.011
13.
Dubey
,
R. K.
,
Climent
,
E.
,
Banerjee
,
C.
, and
Majumder
,
A. K.
,
2016
, “
Performance Monitoring of a Hydrocyclone Based on Underflow Discharge Angle
,”
Int. J. Min. Process.
,
154
, pp.
41
52
.10.1016/j.minpro.2016.07.002
14.
Ji
,
L.
,
Chu
,
K.
,
Kuang
,
S.
,
Chen
,
J.
, and
Yu
,
A.
,
2018
, “
Modeling the Multiphase Flow in Hydrocyclones Using the Coarse-Grained Volume of Fluid—Discrete Element Method and Mixture-Discrete Element Method Approaches
,”
Ind. Eng. Chem. Res.
,
57
(
29
), pp.
9641
9655
.10.1021/acs.iecr.8b01699
15.
Udaya Bhaskar
,
K.
,
Rama Murthy
,
Y.
,
Ramakrishnan
,
N.
,
Srivastava
,
J. K.
,
Sarkar
,
S.
, and
Kumar
,
V.
,
2007
, “
CFD Validation for Flyash Particle Classification in Hydrocyclones
,”
Min. Eng.
,
20
(
3
), pp.
290
302
.10.1016/j.mineng.2006.10.009
16.
Sommerfeld
,
M.
, and
Lain
,
S.
,
2009
, “
From Elementary Processes to the Numerical Prediction of Industrial Particle-Laden Flows
,”
Multiphase Sci. Technol.
,
21
, pp.
123
140
.
17.
Narasimha
,
M.
,
Brennan
,
M.
, and
Holtham
,
P. N.
,
2006
, “
Large Eddy Simulation of hydrocyclone—Prediction of Air-Core Diameter and Shape
,”
Int. J. Min. Process.
,
80
(
1
), pp.
1
14
.10.1016/j.minpro.2006.01.003
18.
Delgadillo
,
J. A.
, and
Rajamani
,
R. K.
,
2005
, “
A Comparative Study of Three Turbulence-Closure Models for the Hydrocyclone Problem
,”
Int. J. Min. Process.
,
77
(
4
), pp.
217
230
.10.1016/j.minpro.2005.06.007
19.
Zheng
,
Q. J.
,
Xia
,
B. S.
,
Pan
,
R. H.
, and
Yu
,
A. B.
,
2017
, “
Prediction of Mass Discharge Rate in Conical Hoppers Using Elastoplastic Model
,”
Powder Technol.
,
307
, pp.
63
72
.10.1016/j.powtec.2016.11.037
20.
Sokolichin
,
A.
,
Eigenberger
,
G.
,
Lapin
,
A.
, and
Lübert
,
A.
,
1997
, “
Dynamic Numerical Simulation of Gas-Liquid Two-Phase Flows Euler/Euler Versus Euler/Lagrange
,”
Chem. Eng. Sci.
,
52
(
4
), pp.
611
626
.10.1016/S0009-2509(96)00425-3
21.
Pfleger
,
D.
,
Gomes
,
S.
,
Gilbert
,
N.
, and
Wagner
,
H. G.
,
1999
, “
Hydrodynamic Simulations of Laboratory Scale Bubble Columns Fundamental Studies of the Eulerian–Eulerian Modelling Approach
,”
Chem. Eng. Sci.
,
54
(
21
), pp.
5091
5099
.10.1016/S0009-2509(99)00261-4
22.
Laı́n
,
S.
,
Bröder
,
D.
,
Sommerfeld
,
M.
, and
Göz
,
M. F.
,
2002
, “
Modelling Hydrodynamics and Turbulence in a Bubble Column Using the Euler–Lagrange Procedure
,”
Int. J. Multiphase Flow
,
28
(
8
), pp.
1381
1407
.10.1016/S0301-9322(02)00028-9
23.
Zhao
,
N.
,
Wang
,
B.
,
Kang
,
Q.
, and
Wang
,
J.
,
2020
, “
Effects of Settling Particles on the Bubble Formation in a Gas-Liquid-Solid Flow System Studied through a Coupled Numerical Method
,”
Phys. Rev. Fluids
,
5
(
3
), p.
033602
.10.1103/PhysRevFluids.5.033602
24.
Zhong
,
W. Q.
,
Yu
,
A. B.
,
Zhou
,
G. W.
,
Xie
,
J.
, and
Zhang
,
H.
,
2016
, “
CFD Simulation of Dense Particulate Reaction System: Approaches, Recent Advances and Applications
,”
Chem. Eng. Sci.
,
140
, pp.
16
43
.10.1016/j.ces.2015.09.035
25.
Murthy
,
Y. R.
, and
Bhaskar
,
K. U.
,
2012
, “
Parametric CFD Studies on Hydrocyclone
,”
Powder Technol.
,
230
, pp.
36
47
.10.1016/j.powtec.2012.06.048
26.
Xu
,
Y.
,
Song
,
X.
,
Sun
,
Z.
,
Lu
,
G.
,
Li
,
P.
, and
Yu
,
J.
,
2012
, “
Simulation Analysis of Multiphase Flow and Performance of Hydrocyclones at Different Atmospheric Pressures
,”
Ind. Eng. Chem. Res.
,
51
(
1
), pp.
443
453
.10.1021/ie201147e
27.
Mokni
,
I.
,
Dhaouadi
,
H.
,
Bournot
,
P.
, and
Mhiri
,
H.
,
2015
, “
Numerical Investigation of the Effect of the Cylindrical Height On Separation Performances of Uniflow Hydrocyclone
,”
Chem. Eng. Sci.
,
122
, pp.
500
513
.10.1016/j.ces.2014.09.020
28.
Wang
,
C.-C.
, and
Wu
,
R.-M.
,
2018
, “
Experimental and Simulation of a Novel Hydrocyclone-Tubular Membrane as Overflow Pipe
,”
Separ. Purif. Technol.
,
198
, pp.
60
67
.10.1016/j.seppur.2017.04.034
29.
Xu
,
B. H.
, and
Yu
,
A. B.
,
1997
, “
Numerical Simulation of the Gas-Solid Flow in a Fluidized Bed by Combining Discrete Particle Method with Computational Fluid Dynamics
,”
Chem. Eng. Sci.
,
52
(
16
), pp.
2785
2809
.10.1016/S0009-2509(97)00081-X
30.
Tsuji
,
Y.
,
Tanaka
,
T.
, and
Ishida
,
T.
,
1992
, “
Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe
,”
Powder Technol.
,
71
(
3
), pp.
239
250
.10.1016/0032-5910(92)88030-L
31.
Pozzetti
,
G.
, and
Peters
,
B.
,
2018
, “
A Multiscale DEM-VOF Method for the Simulation of Three-Phase Flows
,”
Int. J. Multiphase Flow
,
99
, pp.
186
204
.10.1016/j.ijmultiphaseflow.2017.10.008
32.
Wu
,
L.
,
Gong
,
M.
, and
Wang
,
J.
,
2018
, “
Development of a DEM–VOF Model for the Turbulent Free-Surface Flows with Particles and Its Application to Stirred Mixing System
,”
Ind. Eng. Chem. Res.
,
57
(
5
), pp.
1714
1725
.10.1021/acs.iecr.7b04833
33.
Kang
,
Q.
,
He
,
D.
,
Zhao
,
N.
,
Feng
,
X.
, and
Wang
,
J.
,
2020
, “
Hydrodynamics in Unbaffled Liquid-Solid Stirred Tanks with Free Surface Studied by DEM-VOF Method
,”
Chem. Eng. J.
,
386
, p.
122846
.10.1016/j.cej.2019.122846
34.
Rakesh
,
A.
,
Kumar Reddy
,
V. T. S. R.
, and
Narasimha
,
M.
,
2014
, “
Air-Core Size Measurement of Operating Hydrocyclone by Electrical Resistance Tomography
,”
Chem. Eng. Technol.
37
(
5
), pp.
795
805
.10.1002/ceat.201300672
35.
Ke
,
R.
,
Shingote
,
C.
,
Kadambi
,
J. R.
,
Furlan
,
J.
, and
Visintainer
,
R.
,
2020
, “
Experimental and Numerical Investigations of the Fluid Flow in a Hydroclyclone with an Air Core
,”
Mining, Metall. Explor.
,
37
(
1
), pp.
277
286
.
36.
Zhu
,
H. P.
,
Zhou
,
Z. Y.
,
Yang
,
R. Y.
, and
Yu
,
A. B.
,
2007
, “
Discrete Particle Simulation of Particulate Systems: Theoretical developments
,”
Chem. Eng. Sci.
,
62
, pp.
3378
3396
.10.1016/j.ces.2006.12.089
37.
Zhu
,
H. P.
,
Zhou
,
Z. Y.
,
Yang
,
R. Y.
, and
Yu
,
A. B.
,
2008
, “
Discrete Particle Simulation of Particulate Systems: A Review of Major Applications and Findings
,”
Chem. Eng. Sci.
,
63
(
23
), pp.
5728
5770
.10.1016/j.ces.2008.08.006
38.
Shigeto
,
Y.
, and
Sakai
,
M.
,
2013
, “
Arbitrary-Shaped Wall Boundary Modeling Based on Signed Distance Functions for Granular Flow Simulations
,”
Chem. Eng. J.
,
231
, pp.
464
476
.10.1016/j.cej.2013.07.073
39.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
40.
Zhang
,
Y.
,
Cai
,
P.
,
Jiang
,
F.
,
Dong
,
K.
,
Jiang
,
Y.
, and
Wang
,
B.
,
2017
, “
Understanding the Separation of Particles in a Hydrocyclone by Force Analysis
,”
Powder Technol.
,
322
, pp.
471
489
.10.1016/j.powtec.2017.09.031
41.
Vakamalla
,
T. R.
, and
Mangadoddy
,
N.
,
2017
, “
Numerical Simulation of Industrial Hydrocyclones Performance: Role of Turbulence Modelling
,”
Separ. Purif. Technol.
,
176
, pp.
23
39
.10.1016/j.seppur.2016.11.049
42.
Anderson
,
T. B.
, and
Jackson
,
R.
,
1967
, “
Fluid Mechanical Description of Fluidized Beds. Equations of Motion
,”
Ind. Eng. Chem. Fundam.
,
6
(
4
), pp.
527
539
.10.1021/i160024a007
43.
Ding
,
J.
, and
Gidaspow
,
D.
,
1990
, “
A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow
,”
AIChE J.
,
36
(
4
), pp.
523
538
.10.1002/aic.690360404
44.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
45.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
(
3
), pp.
491
511
.10.1017/S0022112078001251
46.
Sun
,
X.
, and
Sakai
,
M.
,
2015
, “
Three-Dimensional Simulation of Gas–Solid–Liquid Flows Using the DEM–VOF Method
,”
Chem. Eng. Sci.
,
134
, pp.
531
548
.10.1016/j.ces.2015.05.059
47.
Im
,
I.-T.
,
Gwak
,
G. D.
,
Kim
,
S. M.
, and
Park
,
Y. K.
,
2018
, “
A Numerical Study of the Flow Characteristics and Separation Efficiency of a Hydrocyclone
,”
KSCE J. Civil Eng.
,
22
(
11
), pp.
4272
4281
.10.1007/s12205-018-1780-1
48.
Hsieh
,
K. T.
, and
Rajamani
,
K.
,
1988
, “
Phenomenological Model of the Hydrocyclone: Model Development and Verification for Single-Phase Flow
,”
Int. J. Min. Proc.
,
22
(
1
), pp.
223
237
.10.1016/0301-7516(88)90065-8
You do not currently have access to this content.