Abstract

Bubble formation and growth in a liquid is an important process in many industries. Bubble formation regime determines the essential characteristics of the bubble formation process such as bubble volume, shape, and formation time. The formation regime changes from single to double and multiple by increasing the volumetric gas flowrate. In the present research, various regimes of air bubble formation in pure water and glycerin solutions (glycerin 92%, glycerin 96%, and glycerin 100%) were observed by conducting experiments, and they have been defined in terms of the dimensionless Froude (Fr) and Bond (Bo) numbers. The liquids that have been used in the experiments provide a wide range of viscosity from 0.001 to 1.07 Pa·s. However, the surface tension remains approximately constant. In these experiments, relatively small needle sizes (lower than 0.6 mm), Bond numbers smaller than 0.05, and Froude numbers smaller than 70,000 were used, and the boundaries between various regimes were determined. The results indicate that the Froude number associated with the boundaries between various regimes decreases by increasing Bond number. In addition, for a given needle diameter, the air flowrate at which the regime changes from single to double is lower in glycerin solutions than in water. The mentioned flowrate decreases by increasing the liquid viscosity. Finally, based on the governing equations and experimental results of this study, a new correlation has been obtained to estimate the volume of the first bubble at the moment of the detachment in the double coalescence regime.

References

1.
Badam
,
V. K.
,
Buwa
,
V.
, and
Durst
,
F.
,
2008
, “
Experimental Investigations of Regimes of Bubble Formation on Submerged Orifices Under Constant Flow Condition
,”
Can. J. Chem. Eng.
,
85
(
3
), pp.
257
267
.10.1002/cjce.5450850301
2.
Hanafizadeh
,
P.
,
Eshraghi
,
J.
,
Kosari
,
E.
, and
Ahmed
,
W. H.
,
2015
, “
The Effect of Gas Properties on Bubble Formation, Growth, and Detachment
,”
Part. Sci. Technol.
,
33
(
6
), pp.
645
651
.10.1080/02726351.2015.1017033
3.
Vafaei
,
S.
,
Borca-Tasciuc
,
T.
, and
Wen
,
D.
,
2010
, “
Theoretical and Experimental Investigation of Quasi-Steady-State Bubble Growth on Top of Submerged Stainless Steel Nozzles
,”
Colloids Surf. A
,
369
(
1–3
), pp.
11
19
.10.1016/j.colsurfa.2010.07.009
4.
Al Ba'ba'a
,
H. B.
,
Elgammal
,
T.
, and
Amano
,
R. S.
,
2016
, “
Correlations of Bubble Diameter and Frequency for Air–Water System Based on Orifice Diameter and Flow Rate
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
114501
.10.1115/1.4033749
5.
Balzan
,
M. A.
,
Hernandez
,
F.
,
Lange
,
C. F.
, and
Fleck
,
B. A.
,
2019
, “
Parametric Study of the Frequency of Bubble Formation at a Single Orifice With Liquid Cross-Flow
,”
ASME J. Fluids Eng.
,
141
(
9
), p.
091102
.10.1115/1.4042755
6.
Shepard
,
T. G.
,
Lee
,
J.
,
Yan
,
B.
, and
Strykowski
,
P. J.
,
2016
, “
Parameters Affecting Bubble Formation and Size Distribution From Porous Media
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031202
.10.1115/1.4031534
7.
Chakraborty
,
I.
,
Biswas
,
G.
, and
Ghoshdastidar
,
P.
,
2011
, “
Bubble Generation in Quiescent and co-Flowing Liquids
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4673
4688
.10.1016/j.ijheatmasstransfer.2011.06.010
8.
Vazquez
,
A.
,
Leifer
,
I.
, and
Sánchez
,
R.
,
2010
, “
Consideration of the Dynamic Forces During Bubble Growth in a Capillary Tube
,”
Chem. Eng. Sci.
,
65
(
13
), pp.
4046
4054
.10.1016/j.ces.2010.03.041
9.
Schäfer
,
R.
,
Merten
,
C.
, and
Eigenberger
,
G.
,
2002
, “
Bubble Size Distributions in a Bubble Column Reactor Under Industrial Conditions
,”
Exp. Therm. Fluid Sci.
,
26
(
6–7
), pp.
595
604
.10.1016/S0894-1777(02)00189-9
10.
Di Bari
,
S.
, and
Robinson
,
J. A.
,
2013
, “
Experimental Study of Gas Injected Bubble Growth From Submerged Orifices
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
124
137
.10.1016/j.expthermflusci.2012.06.005
11.
Gaddis
,
E. S.
, and
Vogelpohl
,
A.
,
1986
, “
Bubble Formation in Quiescent Liquids Under Constant Flow Conditions
,”
Chem. Eng. Sci.
,
41
(
1
), pp.
97
105
.10.1016/0009-2509(86)85202-2
12.
Jamialahmadi
,
M.
,
Zehtaban
,
M.
,
Müller-Steinhagen
,
H.
,
Sarrafi
,
A.
, and
Smith
,
J.
,
2001
, “
Study of Bubble Formation Under Constant Flow Conditions
,”
Chem. Eng. Res. Des.
,
79
(
5
), pp.
523
532
.10.1205/02638760152424299
13.
Terasaka
,
K.
, and
Tsuge
,
H.
,
1993
, “
Bubble Formation Under Constant-Flow Conditions
,”
Chem. Eng. Sci.
,
48
(
19
), pp.
3417
3422
.10.1016/0009-2509(93)80159-N
14.
Vazquez
,
A.
,
Sanchez
,
R.
,
Salinas-Rodriguez
,
E.
,
Soria
,
A.
, and
Manasseh
,
R.
,
2005
, “
A Look at Three Measurement Techniques for Bubble Size Determination
,”
Exp. Thermal Fluid Sci.
,
30
(
1
), pp.
49
57
.10.1016/j.expthermflusci.2005.03.018
15.
Esfidani
,
M. T.
,
Oshaghi
,
M. R.
,
Afshin
,
H.
, and
Firoozabadi
,
B.
,
2017
, “
Modeling and Experimental Investigation of Bubble Formation in Shear-Thinning Liquids
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
071302
.10.1115/1.4036158
16.
Kumar
,
R.
, and
Kuloor
,
N. R.
,
1970
, “
The Formation of Bubbles and Drops
,”
Adv. Chem. Eng.
,
8
(
1
), pp.
255
368
.10.1016/S0065-2377(08)60186-6
17.
Winterson
,
R. H. S.
,
1994
, “
A Simple Method of Predicting Bubble Size in Bubble Columns
,”
Chem. Eng. Proc.
,
33
(
1
), pp.
1
5
.10.1016/0255-2701(94)87001-2
18.
Davidson
,
J. F.
, and
Schüler
,
B.
O. G.
,
1997
, “
Bubble Formation at an Orifice in a Viscous Liquid
,”
Chem. Eng. Res. Des.
, 75, pp.
S105
S115
.10.1016/S0263-8762(97)80008-1
19.
Davidson
,
J.
, and
Harrison
,
D.
,
1963
,
Fluidized Particles
,
Cambridge University Press
,
Cambridge, UK
.
20.
Akita
,
K.
, and
Yoshida
,
F.
,
1974
, “
Bubble Size, Interfacial Area and Liquid Phase Mass Transfer Coefficient in Bubble Columns
,”
Ind. Eng. Chem. Process. Des. Dev.
,
13
(
1
), pp.
84
91
.10.1021/i260049a016
21.
McCann
,
D. J.
, and
Prince
,
R. G. H.
,
1971
, “
Regimes of Bubbling at a Submerged Orifice
,”
Chem. Eng. Sci.
,
26
(
10
), pp.
1505
1512
.10.1016/0009-2509(71)86042-6
22.
Oguz
,
H. N.
, and
Prosperetti
,
A.
,
1993
, “
Dynamics of Bubble Growth and Detachment From a Needle
,”
J. Fluid Mech.
,
257
(
1
), pp.
111
145
.10.1017/S0022112093003015
23.
Kyriakides
,
N. K.
,
Kastrinakis
,
E. G.
,
Nychas
,
S. G.
, and
Goulas
,
A.
,
1997
, “
Bubbling From Nozzles Submerged in Water: Transitions Between Bubbling Regimes
,”
Can. J. Chem. Eng.
,
75
(
4
), pp.
684
691
.10.1002/cjce.5450750405
24.
Chakraborty
,
I.
,
Biswas
,
G.
,
Polepalle
,
S.
, and
Ghoshdastidar
,
P. S.
,
2015
, “
Bubble Formation and Dynamics in a Quiescent High‐Density Liquid
,”
AIChE J.
,
61
(
11
), pp.
3996
4012
.10.1002/aic.14896
25.
Miyahara
,
T.
,
Tanimoto
,
M.
, and
Takahashi
,
T.
,
1982
, “
Bubble Formation From an Orifice at High Injection Rates—The Size of Bubbles Above an Orifice
,”
Kagaku Kogaku Ronbunshu
,
8
(
3
), pp.
304
306
.10.1252/kakoronbunshu.8.304
26.
Tufaile
,
A.
, and
Sartorelli
,
J. C.
,
2000
, “
Chaotic Behavior in Bubble Formation Dynamics
,”
Phys. A
,
275
(
3–4
), pp.
336
346
.10.1016/S0378-4371(99)00440-9
27.
Tufaile
,
A.
, and
Sartorelli
,
J.
,
2002
, “
Bubble and Spherical Air Shell Formation Dynamics
,”
Phys. Rev. E
,
66
(
5
), p.
056204
.10.1103/PhysRevE.66.056204
28.
Zhang
,
L.
, and
Shoji
,
M.
,
2001
, “
Aperiodic Bubble Formation From a Submerged Orifice
,”
Chem. Eng. Sci.
,
56
(
18
), pp.
5371
5381
.10.1016/S0009-2509(01)00241-X
29.
Basu
,
A. S.
,
2013
, “
Droplet Morphometry and Velocimetry (DMV): AVideo Processing Software for Time-Resolved, Label-Free Tracking of Droplet Parameters
,”
Lab Chip
,
13
(
10
), pp.
1892
1901
.10.1039/c3lc50074h
30.
Munson
,
B. R.
,
Okiishi
,
T. H.
,
Rothmayer
,
A. P.
, and
Huebsch
,
W. W.
,
2014
,
Fundamentals of Fluid Mechanics
,
Wiley
, Hoboken, NJ.
31.
Kline, S. J., and McClintock, F. A., 1953, “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng.,
75
(1), pp. 3–8.
32.
Chakraborty
,
I.
,
Biswas
,
G.
, and
Ghoshdastidar
,
P.
,
2013
, “
A Coupled Level-Set and Volume-of-Fluid Method for the Buoyant Rise of Gas Bubbles in Liquids
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
240
259
.10.1016/j.ijheatmasstransfer.2012.11.027
33.
Tritton
,
D.
, and
Egdell
,
C.
,
1993
, “
Chaotic Bubbling
,”
Phys. Fluids A
,
5
(
2
), pp.
503
505
.10.1063/1.858874
34.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
, M. E.
,
1978
,
Bubbles, Drops and Particles
,
Academic Press
,
London, UK
.
35.
Miyahara
,
T.
,
Iwata
,
M.
, and
Takahashi
,
T.
,
1984
, “
Bubble Formation Pattern With Weeping at a Submerged Orifice
,”
J. Chem. Eng. Jpn.
,
17
(
6
), pp.
592
597
.10.1252/jcej.17.592
36.
Higuera
,
F.
, and
Medina
,
A.
,
2006
, “
Injection and Coalescence of Bubbles in a Quiescent Inviscid Liquid
,”
Eur. J. Mech.-B/Fluids
,
25
(
2
), pp.
164
171
.10.1016/j.euromechflu.2005.06.001
37.
Chuang
,
S.
, and
Goldschmidt
,
V.
,
1970
, “
Bubble Formation Due to a Submerged Capillary Tube in Quiescent and Coflowing Streams
,”
J. Basic Eng.
,
92
(
4
), pp.
705
711
.10.1115/1.3425114
38.
Vafaei
,
S.
,
Angeli
,
P.
, and
Wen
,
D.
,
2011
, “
Bubble Growth Rate From Stainless Steel Substrate and Needle Nozzles
,”
Colloids Surf. A
,
384
(
1–3
), pp.
240
247
.10.1016/j.colsurfa.2011.03.066
39.
Gerlach
,
D.
,
Biswas
,
G.
,
Durst
,
F.
, and
Kolobaric
,
V.
,
2005
, “
Quasi-Static Bubble Formation on Submerged Orifices
,”
Int. J. Heat Mass Transfer
,
48
(
2
), pp.
425
438
.10.1016/j.ijheatmasstransfer.2004.09.002
40.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2002
, “
Thermodynamics: An Engineering Approach
,” McGraw-Hill, New York, p.
8862
.
41.
Milne-Thomson
,
L. M.
,
1968
,
Theoretical Hydrodynamics
,
Courier Corporation
, North Chelmsford, MA.
42.
Pirhadi
,
M.
,
Sajadi
,
B.
,
Ahmadi
,
G.
, and
Malekian
,
D.
,
2018
, “
Phase Change and Deposition of Inhaled Droplets in the Human Nasal Cavity Under Cyclic Inspiratory Airflow
,”
J. Aerosol Sci.
,
118
, pp.
64
81
.10.1016/j.jaerosci.2018.01.010
43.
Schlichting
,
H.
,
1979
,
Boundary Layer Theory
, 7th edition,
McGraw-Hill
,
New York
.
44.
Higuera
,
F.
,
2005
, “
Injection and Coalescence of Bubbles in a Very Viscous Liquid
,”
J. Fluid Mech.
,
530
, pp.
369
378
.10.1017/S0022112005003770
You do not currently have access to this content.