Abstract

The Buoyancy-Drag model is a simple model, based on ordinary differential equations, for estimating the growth in the width of a turbulent mixing zone at an interface between fluids of different densities due to Richtmyer–Meshkov and Rayleigh–Taylor instabilities. The model is calibrated to give the required self-similar behavior for mixing in simple situations. However, the early stages of the mixing process are very dependent on the initial conditions and modifications to the Buoyancy-Drag model are then needed to obtain correct results. In a recent paper, Thornber et al. (2017, “Late-Time Growth Rate, Mixing, and Anisotropy in the Multimode Narrowband Richtmyer–Meshkov Instability: The θ-Group Collaboration,” Phys. Fluids, 29, p. 105107), a range of three-dimensional simulation techniques was used to calculate the evolution of the mixing zone integral width due to single-shock Richtmyer–Meshkov mixing from narrowband initial random perturbations. Further analysis of the results of these simulations gives greater insight into the transition from the initial linear behavior to late-time self-similar mixing and provides a way of modifying the Buoyancy-Drag model to treat the initial conditions accurately. Higher-resolution simulations are used to calculate the early time behavior more accurately and compare with a multimode model based on the impulsive linear theory. The analysis of the iLES data also gives a new method for estimating the growth exponent, θ (mixing zone width ∼ tθ), which is suitable for simulations which do not fully reach the self-similar state. The estimates of θ are consistent with the theoretical model of Elbaz and Shvarts (2018, “Modal Model Mean Field Self-Similar Solutions to the Asymptotic Evolution of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and Its Dependence on the Initial Conditions,” Phys. Plasmas, 25, p. 062126).

References

1.
Amendt
,
P.
,
Colvin
,
J. D.
,
Tipton
,
R. E.
,
Hinkel
,
D. E.
,
Edwards
,
M. J.
,
Landen
,
O. L.
,
Ramshaw
,
J. D.
,
Suter
,
L. J.
,
Varnum
,
W. S.
, and
Watt
,
R. G.
,
2002
, “
Indirect-Drive Noncryogenic Double-Shell Ignition Targets for the National Ignition Facility: Design and Analysis
,”
Phys. Plasmas
,
9
(
5
), pp.
2221
2233
.10.1063/1.1459451
2.
Clark
,
D. S.
,
Weber
,
C. R.
,
Milovich
,
J. L.
,
Salmonson
,
J. D.
,
Kritcher
,
A. L.
,
Haan
,
S. W.
,
Hammel
,
B. A.
,
Hinkel
,
D. E.
,
Hurricane
,
O. A.
,
Jones
,
O. S.
,
Marinak
,
M. M.
,
Patel
,
P. K.
,
Robey
,
H. F.
,
Sepke
,
S. M.
, and
Edwards
,
M. J.
,
2016
, “
Three-Dimensional Simulations of Low Foot and High Foot Implosion Experiments on the National Ignition Facility
,”
Phys. Plasmas
,
23
(
5
), p.
056302
.10.1063/1.4943527
3.
Fryxell
,
B.
,
Arnett
,
D.
, and
Mueller
,
E.
,
1991
, “
Instabilities and Clumping in SN 1987A: I. Early Evolution in Two Dimensions
,”
Astrophys. J.
,
367
, pp.
619
634
.10.1086/169657
4.
Zhou
,
Y.
,
2017
, “
Rayleigh-Taylor and Richtmyer-Meshkov Instability Induced Flow, Turbulence, and Mixing. Parts I
,”
Phys. Rep.
,
720–722
, pp.
1
136
. 10.1016/j.physrep.2017.07.005
5.
Zhou
,
Y.
,
2017
, “
Rayleigh-Taylor and Richtmyer-Meshkov Instability Induced Flow, Turbulence, and Mixing. Parts II
,”
Phys. Rep.
,
723–725
, pp. 1–60. 10.1016/j.physrep.2017.07.008
6.
Brown
,
M. A.
,
Batha
,
C. A.
, and
Williams
,
R. J. R.
,
2014
, “
Statistics for Assessing Mixing in a Finite Element Hydrocode
,”
ASME J. Fluids Eng.
,
136
(
9
), p.
091103
.10.1115/1.4027775
7.
Thornber
,
B.
,
Griffond
,
J.
,
Poujade
,
O.
,
Attal
,
N.
,
Varshochi
,
H.
,
Bigdelou
,
P.
,
Ramaprabhu
,
P.
,
Olson
,
B.
,
Greenough
,
J.
,
Zhou
,
Y.
,
Schilling
,
O.
,
Garside
,
K. A.
,
Williams
,
R. J. R.
,
Batha
,
C. A.
,
Kuchugov
,
P. A.
,
Ladonkina
,
M. E.
,
Tishkin
,
V. F.
,
Zmitrenko
,
N. V.
,
Rozanov
,
V. B.
, and
Youngs
,
D. L.
,
2017
, “
Late-Time Growth Rate, Mixing, and Anisotropy in the Multimode Narrowband Richtmyer–Meshkov Instability: The θ-Group Collaboration
,”
Phys. Fluids
,
29
(
10
), p.
105107
.10.1063/1.4993464
8.
Layzer
,
D.
,
1955
, “
On the Instability of Superposed Fluids in a Gravitational Field
,”
Astrophys. J.
,
122
, pp.
1
12
.10.1086/146048
9.
Baker
,
L.
, and
Freeman
,
J. R.
,
1981
, “
Heuristic Model of the Nonlinear Rayleigh‐Taylor Instability
,”
J. Appl. Phys.
,
52
(
2
), pp.
655
663
.10.1063/1.328793
10.
Hansom
,
J. C. V.
,
Rosen
,
P. A.
,
Goldack
,
T. J.
,
Oades
,
K.
,
Fieldhouse
,
P.
,
Cowperthwaite
,
N.
,
Youngs
,
D. L.
,
Mawhinney
,
N.
, and
Baxter
,
A. J.
,
1990
, “
Radiation Driven Planar Foil Instability and Mix Experiments at the AWE HELEN Laser
,”
Laser Particle Beams
,
8
(
1–2
), pp.
51
71
.10.1017/S0263034600007825
11.
Oron
,
D.
,
Arazi
,
L.
,
Kartoon
,
D.
,
Rikanati
,
A.
,
Alon
,
A.
, and
Shvarts
,
D.
,
2001
, “
Dimensionality Dependence of Rayleigh–Taylor and Richtmyer–Meshkov Instability: Late Time Scaling Laws
,”
Phys. Plasmas
,
8
(
6
), pp.
2883
2889
.10.1063/1.1362529
12.
Ramshaw
,
J. D.
,
1998
, “
Simple Model for Linear and Nonlinear Mixing at Unstable Fluid Interfaces With Variable Acceleration
,”
Phys. Rev. E
,
58
(
5
), pp.
5834
5840
.10.1103/PhysRevE.58.5834
13.
Dimonte
,
G.
, and
Schneider
,
M.
,
2000
, “
Density Ratio Dependence of Rayleigh Taylor Mixing for Sustained and Impulsive Acceleration Histories
,”
Phys. Fluids
,
12
(
2
), pp.
304
321
.10.1063/1.870309
14.
Srebro
,
Y.
,
Elbaz
,
Y.
,
Sadot
,
O.
,
Arazi
,
L.
, and
Shvarts
,
D.
,
2003
, “
A General Buoyancy–Drag Model for the Evolution of the Rayleigh–Taylor and Richtmyer–Meshkov Instabilities
,”
Laser Particle Beams
,
21
(
3
), pp.
347
353
.10.1017/S0263034603213094
15.
Schilling
,
O.
,
2020
, “
A Buoyancy–Shear–Drag-Based Turbulence Model for Rayleigh–Taylor, Reshocked Richtmyer–Meshkov, and Kelvin–Helmholtz Mixing
,”
Phys. D
,
402
, p.
132238
.10.1016/j.physd.2019.132238
16.
Soulard
,
O.
,
Guillois
,
F.
,
Griffond
,
J.
,
Sabelnikov
,
V.
, and
Simoens
,
S.
,
2018
, “
Permanence of Large Eddies in Richtmyer-Meshkov Turbulence With a Small Atwood Number
,”
Phys. Rev. Fluids
,
3
(
10
), p.
104603
.10.1103/PhysRevFluids.3.104603
17.
Elbaz
,
Y.
, and
Shvarts
,
D.
,
2018
, “
Modal Model Mean Field Self-Similar Solutions to the Asymptotic Evolution of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and Its Dependence on the Initial Conditions
,”
Phys. Plasmas
,
25
(
6
), p.
062126
.10.1063/1.5031922
18.
Dimonte
,
G.
, and
Tipton
,
R.
,
2006
, “
K-L Turbulence Model for the Self-Similar Growth of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities
,”
Phys. Fluids
,
18
(
8
), p.
085101
.10.1063/1.2219768
19.
Morán-López
,
J. T.
, and
Schilling
,
O.
,
2013
, “
Multicomponent Reynolds-Averaged Navier–Stokes Simulations of Reshocked Richtmyer–Meshkov Instability-Induced Mixing
,”
High Energy Density Phys.
,
9
(
1
), pp.
112
121
.10.1016/j.hedp.2012.11.001
20.
Mikaelian
,
K. O.
,
2015
, “
Testing an Analytic Model for Richtmyer–Meshkov Turbulent Mixing Widths
,”
Shock Waves
,
25
(
1
), pp.
35
45
.10.1007/s00193-014-0537-0
21.
Andrews
,
M. J.
, and
Spalding
,
D. B.
,
1990
, “
A Simple Experiment to Investigate Two-Dimensional Mixing by Rayleigh–Taylor Instability
,”
Phys. Fluids A
,
2
(
6
), pp.
922
927
.10.1063/1.857652
22.
Youngs
,
D. L.
,
1994
, “
Numerical Simulation of Mixing by Rayleigh–Taylor and Richtmyer–Meshkov Instabilities
,”
Laser Particle Beams
,
12
(
4
), pp.
725
750
.10.1017/S0263034600008557
23.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
(
2
), pp.
297
319
.10.1002/cpa.3160130207
24.
Vandenboomgaerde
,
M.
,
Mügler
,
C.
, and
Gauthier
,
S.
,
1998
, “
Impulsive Model for the Richtmyer-Meshkov Instability
,”
Phys. Rev. E
,
58
(
2
), pp.
1874
1882
.10.1103/PhysRevE.58.1874
25.
Rikanati
,
A.
,
Oron
,
D.
,
Sadot
,
O.
, and
Shvarts
,
D.
,
2003
, “
High Initial Amplitude and High Mach Number Effects on the Evolution of the Single-Mode Richtmyer-Meshkov Instability
,”
Phys. Rev. E
,
67
(
2
), p.
026307
.10.1103/PhysRevE.67.026307
26.
Duff
,
R. E.
,
Harlow
,
F. H.
, and
Hirt
,
C. W.
,
1962
, “
Effects of Diffusion on Interface Instability Between Gases
,”
Phys. Fluids
,
5
(
4
), pp.
417
425
.10.1063/1.1706634
27.
Thornber
,
B.
,
Drikakis
,
D.
,
Youngs
,
D. L.
, and
Williams
,
R. J. R.
,
2010
, “
The Influence of Initial Conditions on Turbulent Mixing Due to Richtmyer–Meshkov Instability
,”
J. Fluid Mech.
,
654
, pp.
99
139
.10.1017/S0022112010000492
28.
Oggian
,
T.
,
Drikakis
,
D.
,
Youngs
,
D. L.
, and
Williams
,
R. J. R.
,
2015
, “
Computing Multi-Mode Shock-Induced Compressible Turbulent Mixing at Late Times
,”
J. Fluid Mech.
,
779
, pp.
411
431
.10.1017/jfm.2015.392
You do not currently have access to this content.