Through numerical simulation and experiments analysis, it is indicated that the hydraulic and anticavitation performance of a centrifugal pump with twisted gap drainage blades based on flow control theory can be significantly improved under certain operating conditions. In order to introduce the technology of gap drainage to practical applications, we put forward the parameter formulas of the twisted gap drainage blade to design three-dimensional new type blade, which are also proved to be effective for enhancing the dynamic characteristics of the centrifugal pump. Furthermore, a practical centrifugal pump is redesigned to be a twisted gap drainage impeller with the same structure size as the original impeller, and the nonlinear hybrid Reynolds-averaged Navier–Stokes (RANS)/large eddy simulation (LES) method is employed to simulate the hydraulic dynamic characteristics. Numerical simulation results show that the hydraulic performance and dynamic characteristics of the redesigned impeller centrifugal pump are significantly enhanced. In experiments, the twisted gap drainage blades structure not only remarkably improves the hydraulic performance and the pressure pulsation characteristics of the centrifugal pump but also reduces the vibration intensity.

References

1.
Guo
,
S. J.
, and
Maruta
,
Y.
,
2005
, “
Experimental Investigations on Pressure Fluctuations and Vibration of the Impeller in a Centrifugal Pump With Vaned Diffusers
,”
JSME Int. J., Ser. B
,
48
(
1
), pp.
136
143
.
2.
Al-Qutub
,
A.
,
Khalifa
,
A.
, and
Khulief
,
Y.
,
2009
, “
Experimental Investigation of the Effect of Radial Gap and Impeller Blade Exit on Flow-Induced Vibration at the Blade-Passing Frequency in a Centrifugal Pump
,”
Int. J. Rotating Mach.
,
2009
, p. 704845.
3.
Li
,
G. B. Y. M.-G.
, and
Can
,
Z. K.
,
2012
, “
Experimental Study on Cavitation Induced Low Frequency Vibration in a Centrifugal Pump
,”
J. Eng. Thermophys.
,
6
, p.
16
.
4.
Aihua
,
J.
,
Guoping
,
L.
, and
Pu
,
Z.
,
2014
, “
Vibration Incited by Fluid Forces on Centrifugal Pump From Volute Path and Impeller Path
,”
J. Vib. Shock
,
33
(
10
), pp.
1
7
.
5.
Braun
,
O.
,
2009
, “
Part Load Flow in Radial Centrifugal Pumps
,”
Ph.D. thesis
, EPFL, Lausanne, Switzerland.
6.
Parrondo-Gayo
,
J. L.
,
Gonzalez-Perez
,
J.
, and
Fernández-Francos
,
J. N.
,
2002
, “
The Effect of the Operating Point on the Pressure Fluctuations at the Blade Passage Frequency in the Volute of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
784
790
.
7.
Zhang
,
N.
,
Yang
,
M.
,
Gao
,
B.
,
Li
,
Z.
, and
Ni
,
D.
,
2016
, “
Investigation of Rotor-Stator Interaction and Flow Unsteadiness in a Low Specific Speed Centrifugal Pump
,”
Strojniski Vestnik/J. Mech. Eng.
,
62
(
1
), pp. 21–33.
8.
Barrio
,
R.
,
Blanco
,
E.
,
Parrondo
,
J.
,
Gonzalez
,
J.
, and
Fernandez
,
J.
,
2008
, “
The Effect of Impeller Cutback on the Fluid-Dynamic Pulsations and Load at the Blade-Passing Frequency in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111102
.
9.
Barrio
,
R.
,
Parrondo
,
J.
, and
Blanco
,
E.
,
2010
, “
Numerical Analysis of the Unsteady Flow in the Near-Tongue Region in a Volute-Type Centrifugal Pump for Different Operating Points
,”
Comput. Fluids
,
39
(
5
), pp.
859
870
.
10.
Yao
,
Z.
,
Wang
,
F.
,
Qu
,
L.
,
Xiao
,
R.
,
He
,
C.
, and
Wang
,
M.
,
2011
, “
Experimental Investigation of Time-Frequency Characteristics of Pressure Fluctuations in a Double-Suction Centrifugal Pump
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101303
.
11.
Zhao
,
X.
,
Xiao
,
Y.
,
Wang
,
Z.
,
Luo
,
Y.
, and
Cao
,
L.
,
2018
, “
Unsteady Flow and Pressure Pulsation Characteristics Analysis of Rotating Stall in Centrifugal Pumps Under Off-Design Conditions
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021105
.
12.
Lucius
,
A.
, and
Brenner
,
G.
,
2011
, “
Numerical Simulation and Evaluation of Velocity Fluctuations During Rotating Stall of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081102
.
13.
Posa
,
A.
,
Lippolis
,
A.
, and
Balaras
,
E.
,
2016
, “
Investigation of Separation Phenomena in a Radial Pump at Reduced Flow Rate by Large-Eddy Simulation
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121101
.
14.
Chen
,
H.-X.
,
Liu
,
W.
,
Jian
,
W.
,
Wei
,
P.-R.
, and
Zhu
,
B.
,
2011
, “
Development of Low Specific-Speed Centrifugal Pump Impellers Based on Flow Control Technique
,”
J. Drain. Irrig. Mach. Eng.
,
29
(
6
), pp.
466
470
.
15.
Li
,
S.-B.
,
Wei
,
P.-R.
, and
Chen
,
H.-X.
,
2012
, “
Effects of Low Specific Speed Centrifugal Pumps Performance With Gap Drainage Blades
,”
J. Shanghai Univ.
,
4
, pp. 396–400.
16.
Chen
,
H.-X.
,
Lin
,
Y.-Z.
, and
Zhu
,
B.
,
2013
, “
Experimental Study on Cavitation Performance of Centrifugal Pump With Impeller Having Leading Edge Slots
,”
J. Drain. Irrig. Mach. Eng.
,
7
, pp. 570–574.
17.
Zhu
,
B.
,
2014
, “
Research on the Mechanism of Performance Improving in Low Specific Speed Centrifugal Pump With Gap Drainage Blades
,” Ph.D. thesis, Shanghai University, Shanghai, China.
18.
Zhang
,
W.
,
Wei
,
Q.
,
Chen
,
H.-X.
,
Ma
,
Z.
, and
Wang
,
D.
,
2018
, “
Pressure Fluctuation and Vibration Performance of Centrifugal Pump With Gap Drainage Impeller
,”
J. Shanghai Univ.
,
24
(
2
), pp.
236
248
.
19.
Wei
,
Q.
,
2017
, “
Study on the Characteristics and Impact Mechanism of Pressure Fluctuation in a Centrifugal Pump With Gap Drainage Blades
,” Ph.D. thesis, Shanghai University, Shanghai, China.
20.
Zhang
,
Z. C.
,
Chen
,
H. X.
,
Ma
,
Z.
,
Wei
,
Q.
,
He
,
J. W.
,
Liu
,
H.
, and
Liu
,
C.
,
2018
, “
Application of the Hybrid RANS/LES Method on the Hydraulic Dynamic Performance of Centrifugal Pumps
,”
J. Hydrodyn.
, (epub).
21.
Chen
,
H. X.
,
He
,
J. W.
, and
Liu
,
C.
,
2017
, “
Design and Experiment of the Centrifugal Pump Impellers With Twisted Inlet Vice Blades
,”
J. Hydrodyn.
,
29
(
6
), pp.
1085
1088
.
22.
Wei
,
Q.
,
Chen
,
H.-X.
, and
Ma
,
Z.
,
2016
, “
An Hybrid RANS/LES Model for Simulation of Complex Turbulent Flow
,”
J. Hydrodyn.
,
28
(
5
), pp.
811
820
.
23.
Wei
,
Q.
,
Chen
,
H.-X.
, and
Ma
,
Z.
,
2015
, “
Numerical Simulation of Flow Around Airfoil With Nonlinear RANS Model
,”
ASME
Paper No. AJKFluids2015-02777.
24.
Champagne
,
F.
,
Harris
,
V.
, and
Corrsin
,
S.
,
1970
, “
Experiments on Nearly Homogeneous Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
(
1
), pp.
81
139
.
25.
Tavoularis
,
S.
, and
Corrsin
,
S.
,
1981
, “
Experiments in Nearly Homogenous Turbulent Shear Flow With a Uniform Mean Temperature Gradient—Part 1
,”
J. Fluid Mech.
,
104
(
1
), pp.
311
347
.
26.
Lee
,
M. J.
,
Kim
,
J.
, and
Moin
,
P.
,
1990
, “
Structure of Turbulence at High Shear Rate
,”
J. Fluid Mech.
,
216
(
1
), pp.
561
583
.
27.
Rogers
,
M. M.
, and
Moin
,
P.
,
1987
, “
The Structure of the Vorticity Field in Homogeneous Turbulent Flows
,”
J. Fluid Mech.
,
176
(
1
), pp.
33
66
.
28.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p. 078001.
You do not currently have access to this content.