The effects of a rotor–stator interface model on the hydraulic and suction performance of a single-stage centrifugal pump have been evaluated. A three-dimensional Reynolds-averaged Navier–Stokes (RANS) analysis was performed using the shear-stress transport turbulence model. The cavitating flow was simulated using a homogeneous two-phase mixture model and a simplified Rayleigh–Plesset cavitation model. Three performance parameters were selected to compare different cases: the hydraulic efficiency, head coefficient, and critical cavitation number for a head-drop of 3%. Frozen-rotor and stage models were evaluated for the rotor–stator interface. The evaluation was done using three different computational domains: one with a single passage of the impeller with a vaneless diffuser, one with a single passage of the impeller with the whole shape of volute casing, and another with the whole passage of the impeller with the whole shape of volute casing. Two different volute shapes were also tested. The results show that it is desirable to use the whole domain of the impeller and volute with the frozen-rotor model for accurate prediction of the suction performance. The stage model is not recommended for the prediction of the suction performance of the centrifugal pump with the volute in severe off-design conditions.

References

1.
Goto
,
A.
,
2016
, “
Historical Perspective on Fluid Machinery Flow Optimization in an Industry
,”
Int. J. Fluid Mach. Syst.
,
9
(
1
), pp.
75
84
.
2.
Hirschi
,
R.
,
Dupont
,
P.
,
Avellan
,
F.
,
Favre
,
J. N.
,
Guelich
,
J. F.
, and
Parkinson
,
E.
,
1998
, “
Centrifugal Pump Performance Drop Due to Leading Edge Cavitation: Numerical Predictions Compared With Model Tests
,”
ASME J. Fluids Eng.
,
120
(
4
), pp.
705
711
.
3.
Medvitz
,
R. B.
,
Kunz
,
R. F.
,
Boger
,
D. A.
,
Lindau
,
J. W.
,
Yocum
,
A. M.
, and
Pauley
,
L. L.
,
2001
, “
Performance Analysis of Cavitating Flow in Centrifugal Pumps Using Multiphase CFD
,”
ASME
Paper No. FEDSM2001-18114.
4.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
,
Reboud
,
J. L.
,
Hofmann
,
M.
, and
Stoffel
,
B.
,
2003
, “
Experimental and Numerical Studies in a Centrifugal Pump With Two-Dimensional Curved Blades in Cavitating Condition
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
970
978
.
5.
Mejri
,
I.
,
Bakir
,
F.
,
Rey
,
R.
, and
Belamri
,
T.
,
2006
, “
Comparison of Computational Results Obtained From a Homogeneous Cavitation Model With Experimental Investigations of Three Inducers
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1308
1323
.
6.
Pouffary
,
B.
,
Patella
,
R. F.
,
Reboud
,
J.-L.
, and
Lambert
,
P.-A.
,
2008
, “
Numerical Simulation of 3D Cavitating Flows: Analysis of Cavitation Head Drop in Turbomachinery
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061301
.
7.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
,
2000
, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.
8.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
,
Yokohama, Japan
,
May 30–June 3
, Paper No. 152.
9.
Dellanoy
,
Y.
, and
Kueny
,
J. L.
,
1990
, “
Two Phase Flow Approach in Unsteady Cavitation Modeling
,” Proceedings of Cavitation and Multiphase Flow Forum, the Spring Meeting of ASME Fluids Engineering Division, Toronto, ON, Canada, June 4–7, pp. 153–158.
10.
Mani
,
K. V.
,
Cervone
,
A.
, and
Hickey
,
J.-P.
,
2016
, “
Turbulence Modeling of Cavitating Flows in Liquid Rocket Turbopumps
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011301
.
11.
ANSYS
,
2014
, “
ANSYS CFX-Solver Theory Guide-Release 15.0
,” ANSYS, Canonsburg, PA.
12.
Gu
,
F.
,
Engeda
,
A.
,
Cave
,
M.
, and
Di Liberti
,
J.-L.
,
2001
, “
A Numerical Investigation on the Volute/Diffuser Interaction Due to the Axial Distortion at the Impeller Exit
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
475
483
.
13.
Steglich
,
T.
,
Kitzinger
,
J.
,
Seume
,
J. R.
,
Van den Braembussche
,
R. A.
, and
Prinsier
,
J.
,
2008
, “
Improved Diffuser/Volute Combinations for Centrifugal Compressors
,”
ASME J. Turbomach.
,
130
(
1
), p.
011014
.
14.
Heo
,
M. W.
,
Kim
,
J. H.
, and
Kim
,
K. Y.
,
2015
, “
Design Optimization of a Centrifugal Fan With Splitter Blades
,”
Int. J. Turbo Jet-Engines
,
32
(
2
), pp.
143
154
.
15.
Zheng
,
X.
,
Lin
,
Y.
, and
Sun
,
Z.
,
2018
, “
Effects of Volute's Asymmetry on the Performance of a Turbocharger Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part G
,
232
(
7
), pp.
1235
1246
.
16.
Shim
,
H. S.
,
Afzal
,
A.
,
Kim
,
K. Y.
, and
Jeong
,
H. S.
,
2016
, “
Three-Objective Optimization of a Centrifugal Pump With Double Volute to Minimize Radial Thrust at Off-Design Conditions
,”
Proc. Inst. Mech. Eng., Part A
,
236
(
5
), pp.
598
615
.
17.
Khoeini
,
D.
, and
Shirani
,
E.
,
2018
, “
Enhancement of a Centrifugal Pump Performance by Simultaneous Use of Splitter Blades and Angular Impeller Diffuser
,”
Int. J. Fluid Mach. Syst.
,
11
(
2
), pp.
191
204
.
18.
Thakur
,
S.
,
Lin
,
W.
, and
Wright
,
J.
,
2002
, “
Prediction of Flow in Centrifugal Blower Using Quasi-Steady Rotor–Stator Models
,”
J. Eng. Mech.
,
128
(
10
), pp.
1039
1049
.
19.
Dai
,
Y.
,
Engeda
,
A.
,
Cave
,
M.
, and
Di Liberti
,
J.-L.
,
2009
, “
Numerical Study and Experimental Validation of the Performance of Two Different Volutes With the Same Compressor Impeller
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
2
), pp.
157
166
.
20.
Lorett
,
J. A.
, and
Gopalakrishnan
,
S.
,
1986
, “
Interaction Between Impeller and Volute of Pumps at Off-Design Conditions
,”
ASME J. Fluids Eng.
,
108
(
1
), pp.
12
18
.
21.
Brennen
,
C. E.
,
2007
, “
Multifrequency Instability of Cavitating Inducers
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
731
736
.
22.
Wang
,
Y.
,
Liu
,
H.
,
Liu
,
D.
,
Yuan
,
S.
,
Wang
,
J.
, and
Jiang
,
L.
,
2016
, “
Application of the Two-Phase Three-Component Computational Model to Predict Cavitating Flow in a Centrifugal Pump and Its Validation
,”
Comput. Fluids
,
131
, pp.
142
150
.
23.
Franc
,
J. P.
,
2007
,
The Rayleigh-Plesset Equation: A Simple and Powerful Tool to Understand Various Aspects of Cavitation
,
Springer
,
Vienna, Austria
.
24.
Stepanoff
,
A. J.
,
1957
,
Centrifugal and Axial Flow Pumps: Theory, Design, and Application
,
Wiley
,
New York
.
25.
Karassik
,
I. J.
,
Messina
,
J. P.
,
Cooper
,
P.
, and
Heald
,
C. C.
,
2001
,
Pump Handbook
, 3rd ed.,
McGraw-Hill
,
New York
.
26.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
27.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “
Turbulence Modeling Validation Testing and Development
,” NASA Ames Research Center, Mountain View, CA, Report No. 110446.
28.
Kim
,
S.
,
Lee
,
K.-Y.
,
Kim
,
J.-H.
, and
Choi
,
Y.-S.
,
2014
, “
A Numerical Study on the Improvement of Suction Performance and Hydraulic Efficiency for a Mixed-Flow Pump Impeller
,”
Math. Probl. Eng.
,
2014
, p. 269483.
29.
Zhang
,
D.
,
Shi
,
W.
,
Pan
,
D.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121103
.
30.
Zhu
,
B.
, and
Chen
,
H.
,
2017
, “
Analysis of the Staggered and Fixed Cavitation Phenomenon Observed in Centrifugal Pumps Employing a Gap Drainage Impeller
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031301
.
31.
Shim
,
H.-S.
,
Kim
,
K.-Y.
, and
Choi
,
Y.-S.
,
2018
, “
Three-Objective Optimization of a Centrifugal Pump to Reduce Flow Recirculation and Cavitation
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091202
.
32.
Roache
,
P. J.
,
1998
, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
.
33.
Celik
,
I.
, and
Karatekin
,
O.
,
1997
, “
Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
584
590
.
34.
Choi
,
Y. -S.
,
Kim
,
K. -Y.
,
Yoo
,
I. -S.
, and
Lee
,
Y. -K.
, 2017, “
Development of Design Program for Centrifugal and Mixed-flow Pump (4th Year Report)
,” Korea Ministry of Trade, Industry and Energy, Sejong-si, South Korea, Report No. 10044860ASME.
35.
Korean Standard Association (KSA)
,
2015
, “
Testing Methods for Centrifugal Pumps, Mixed Flow Pumps and Axial Flow Pumps
,” Standards Korean Association, Seoul, South Korea, Standard No. KS B 6301.
36.
API
,
2010
, “
Centrifugal Pumps for Petroleum, Heavy Duty Chemical and Gas Industry Services
,” American Petroleum Institute, Washington, DC, Standard No. ANSI/API STANDARD 610.
37.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
,
Concepts ETI
,
Hartford, VT
.
38.
Gülich
,
J. F.
,
1989
,
Centrifugal Pumps
,
Springer
,
New York
.
39.
Adkins
,
D. R.
, and
Brennen
,
C. E.
,
1988
, “
Analyses of Hydrodynamic Radial Forces on Centrifugal Pump Impellers
,”
ASME J. Fluids Eng.
,
110
(
1
), pp.
20
28
.
40.
Wang
,
J.
,
Wang
,
Y.
,
Liu
,
H.
,
Si
,
Q.
, and
Dular
,
M.
,
2018
, “
Rotating Corrected-Based Cavitation Model for a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
140
(
11
), p.
111301
.
41.
Fu
,
Y.
,
Yuan
,
J.
,
Yuan
,
S.
,
Pace
,
G.
,
d'Agostino
,
L.
,
Huang
,
P.
, and
Li
,
X.
,
2014
, “
Numerical and Experimental Analysis of Flow Phenomena in a Centrifugal Pump Operating Under Low Flow Rates
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011102
.
42.
Visser
,
F. C.
,
2001
, “
Some User Experience Demonstrating the Use of Computational Fluid Dynamics for Cavitation Analysis and Head Prediction of Centrifugal Pumps
,”
ASME
Paper No. FEDSM2001-18087.
43.
Cavazzini
,
G.
,
Pavesi
,
G.
,
Santolin
,
A.
,
Ardizzon
,
G.
, and
Lorenzi
,
R.
,
2015
, “
Using Splitter Blades to Improve Suction Performance of Centrifugal Impeller Pumps
,”
Proc. Inst. Mech. Eng., Part A
,
229
(
3
), pp.
309
323
.
44.
Parrondo-Gayo
,
J. L.
,
González-Pérez
,
J.
, and
Fernández-Francos
,
J.
,
2002
, “
The Effect of the Operating Point on the Pressure Fluctuations at the Blade Passage Frequency in the Volute of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
784
790
.
You do not currently have access to this content.