Many uncertain factors in the water-emerging process of a vehicle influence the taking effect of the air film around its shoulder in the load reduction and attitude control. Assuming the launch parameters (launch depth, vehicle velocity, and chamber pressure) as sources of uncertainties, the uncertain evolution process of the air film in the water-emerging process of a vehicle is quantified by adopting the nonintrusive polynomial chaos (NIPC) method with the sample space constructed using linearly independent probabilistic collocation points. A sensitivity analysis was conducted for the key performance indicators of the air film to evaluate the contribution of each uncertain launch parameter.

References

1.
Ceccio
,
S. L.
,
2010
, “
Friction Drag Reduction of External Flows With Bubble and Gas Injection
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
183
203
.
2.
Cao
,
L.
,
Karn
,
A.
,
Arndt
,
R. E. A.
,
Wang
,
Z.
, and
Hong
,
J.
,
2016
, “
Numerical Investigations of Pressure Distribution Inside a Ventilated Supercavity
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021301
.
3.
Levy
,
L. J.
,
2005
, “
The Systems Analysis, Test, and Evaluation of Strategic Systems
,”
Johns Hopkins APL Tech. Dig.
,
26
(
4
), pp.
438
442
.http://www.jhuapl.edu/techdigest/TD/td2604/Levy.pdf
4.
Shi
,
H. H.
,
Zhou
,
Y. J.
,
Jia
,
H. X.
, and
Zhu
,
B. B.
,
2016
, “
The Effects of Water Depth and Length-to-Diameter Ratio on Drag Coefficient and Cavity Shape of Underwater Supercavitating Projectiles
,”
Acta ArmamentaRii
,
37
(
11
), pp.
2029
2036
.
5.
Wang
,
Y.
,
Huang
,
C.
,
Fang
,
X.
,
Wu
,
X.
, and
Du
,
T.
,
2016
, “
On the Internal Collapse Phenomenon at the Closure of Cavitation Bubbles in a Deceleration Process of Underwater Vertical Launching
,”
Appl. Ocean Res.
,
56
, pp.
157
165
.
6.
Chen
,
Y.
,
Lu
,
C.
,
Chen
,
X.
, and
Cao
,
J.
,
2015
, “
Numerical Investigation on the Cavitation Collapse Regime Around the Submerged Vehicles Navigating With Deceleration
,”
Eur. J. Mech. B
,
49
, pp.
153
170
.
7.
Liu
,
T.
,
Huang
,
B.
,
Wang
,
G.
,
Zhang
,
M.
, and
Gao
,
D.
,
2017
, “
Experimental Investigation of the Flow Pattern for Ventilated Partial Cavitating Flows With Effect of Froude Number and Gas Entrainment
,”
Ocean Eng.
,
129
, pp.
343
351
.
8.
Salehi
,
S.
,
Raisee
,
M.
,
Cervantes
,
M. J.
, and
Nourbakhsh
,
A.
,
2017
, “
The Effects of Inflow Uncertainties on the Characteristics of Developing Turbulent Flow in Rectangular Pipe and Asymmetric Diffuser
,”
ASME J. Fluids Eng.
,
139
(
4
), p.
041402
.
9.
Xiong
,
F. F.
,
Yang
,
S. X.
,
Liu
,
Y.
, and
Chen
,
S. S.
,
2015
,
Engineering Probabilistic Uncertainty Analysis Method
,
Science Press
,
Beijing, China
, Chap. 6.
10.
Dunn
,
M. C.
,
Shotorban
,
B.
, and
Frendi
,
A.
,
2011
, “
Uncertainty Quantification of Turbulence Model Coefficients Via Latin Hypercube Sampling Method
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041402
.
11.
Zhao
,
K.
,
Gao
,
Z.
,
Huang
,
J.
, and
Li
,
J.
,
2014
, “
Uncertainty Quantification and Robust Design of Airfoil Based on Polynomial Chaos Technique
,”
Chin. J. Theor. Appl. Mech.
,
46
(
1
), pp.
10
19
.
12.
Congedo
,
P. M.
,
Goncalves
,
E.
, and
Rodio
,
M. G.
,
2015
, “
About the Uncertainty Quantification of Turbulence and Cavitation Models in Cavitating Flows Simulations
,”
Eur. J. Mech. B
,
53
, pp.
190
204
.
13.
Rodio
,
M. G.
, and
Congedo
,
P. M.
,
2014
, “
Robust Analysis of Cavitating Flows in the Venturi Tube
,”
Eur. J. Mech. B
,
44
, pp.
88
99
.
14.
Ma
,
G.
,
Chen
,
F.
,
Yu
,
J.
, and
Wang
,
K.
,
2018
, “
Numerical Investigation of Trajectory and Attitude Robustness of an Underwater Vehicle Considering the Uncertainty of Platform Velocity and Yaw Angle
,”
ASME J. Fluids Eng.
,
141
(
2
), p.
021106
.
15.
Ma
,
G.
,
Chen
,
F.
,
Yu
,
J.
, and
Liu
,
H.
,
2017
, “
Flow Mechanism and Characteristics of Pressure-Equalizing Film Along the Surface of a Moving Underwater Vehicle
,”
ASME J. Fluids Eng.
,
140
(
4
), p.
041103
.
16.
Mohammadi
,
A.
, and
Raisee
,
M.
,
2017
, “
Effects of Operational and Geometrical Uncertainties on Heat Transfer and Pressure Drop of Ribbed Passages
,”
Appl. Therm. Eng.
,
125
, pp.
686
701
.
17.
Fisher
,
J.
, and
Bhattacharya
,
R.
,
2011
, “
Optimal Trajectory Generation With Probabilistic System Uncertainty Using Polynomial Chaos
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
1
), p.
014501
.
18.
Jiang
,
S. H.
,
Li
,
D. Q.
, and
Zhou
,
C. B.
,
2012
, “
Optimal Probabilistic Collocation Points for Stochastic Response Surface Method
,”
Chin. J. Comput. Mech.
,
29
(
3
), pp.
345
351
.
19.
Mazzoni
,
C. M.
,
Ahlfeld
,
R.
,
Rosic
,
B.
, and
Montomoli
,
F.
,
2018
, “
Uncertainty Quantification of Leakages in a Multistage Simulation and Comparison With Experiments
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021110
.
20.
Tian
,
W.
,
Jiang
,
C.
,
Ni
,
B.
,
Wu
,
Z.
,
Wang
,
Q.
, and
Yang
,
L.
,
2018
, “
Global Sensitivity Analysis and Multi-Objective Optimization Design of Temperature Field of Sinter Cooler Based on Energy Value
,”
Appl. Therm. Eng.
,
143
, pp.
759
766
.
21.
Hu
,
J.
, and
Zhang
,
S.
,
2016
, “
Global Sensitivity Analysis Based on Polynomial Chaos
,”
Chin. J. Comput. Phys.
,
33
(
1
), pp.
1
14
.
You do not currently have access to this content.