Renewable energy sources (RES) have reached 23.7% of the worldwide electrical generation production in 2015. The hydraulic energy contribution amounts to 16.6% and comes mainly form large-scale hydropower plants, where Francis turbines represents 60% of the generating units. However, the future massive development of RES will require more advanced grid regulation strategies that may be achieved by increasing the operation flexibility of the Francis generating units. Part load operating condition of these turbines is hindered by pressure fluctuations in the draft tube of the machine. A precessing helical vortex rope develops in this condition, which imperils the mechanical structure and limits the operation flexibility of these turbines. A thorough description of the physical mechanism leading to the vortex rope is a prerequisite to develop relevant flow control strategies. This work, based on a linear global stability analysis of the time-averaged flow field, including a turbulent eddy viscosity, interprets the vortex rope as a global unstable eigenmode. In close resemblance to spiral vortex breakdown, a single-helix disturbance develops around the time-averaged flow field and growths in time to finally form the vortex rope. The frequency and the structure of this unstable linear disturbance are found in good agreement with respect to the three-dimensional (3D) numerical flow simulations.

References

1.
Jacob
,
T.
,
Prenat
,
J.
, and
Maria
,
D.
,
1988
, “
Comportement Dynamique d'une Turbine Francis à Forte Charge. Comparaisons Modèle Prototype
,”
Houille Blanche 3
,
3–4
, pp.
293
300
.
2.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Mackawa
,
Y.
,
Watanabe
,
S.
, and
Hashimoto
,
T.
,
1997
, “
Observations of Oscillating Cavitation of an Inducer
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
775
781
.
3.
Dériaz
,
P.
,
1960
, “
A Contribution to the Understanding of Flow in Draft Tubes of Francis Turbines
,”
International Association for Hydraulic Research, Hydraulic Machinery and Equipment Symposium
, Nice, France, Paper No. B-1.
4.
Rheingans
,
W.
,
1940
, “
Power Swings in Hydroelectric Power Plants
,”
Trans. ASME
,
62
(
174
), pp.
171
184
.
5.
Nishi
,
M.
,
Kubota
,
T.
,
Matsunaga
,
S.
, and
Senoo
,
Y.
,
1982
, “
Flow Regimes in Elbow Type Draft Tube
,”
11th Symposium of the International Association for Hydraulic Research Section for Hydraulic Machinery Equipment and Cavitation
, Amsterdam, The Netherlands, Sept. 13–17.
6.
Arpe
,
J.
, and
Avellan
,
F.
,
2002
, “Pressure Wall Measurements in the Whole Draft Tube: Steady and Unsteady Analysis,”
21st IAHR Symposium Section Hydraulic Machinery and Systems
, Lausanne, Switzerland, Sept. 9–12, pp. 593–602.
7.
Ciocan
,
G.
,
Iliescu
,
M.
,
Vu
,
T.
,
Nenneman
,
B.
, and
Avellan
,
F.
,
2007
, “
Experimental Study and Numerical Simulation of the Flindt Draft Tube Rotating Vortex
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
146
158
.
8.
Iliescu
,
M.
,
Ciocan
,
G.
, and
Avellan
,
F.
,
2008
, “
Analysis of the Cavitating Draft Tube Vortex in a Francis Turbine Using Particle Image Velocimetry Measurements in Two Phase Flow
,”
ASME J. Fluids Eng.
,
130
(
2
), p.
021105
.
9.
Favrel
,
A.
,
Müller
,
A.
,
Landry
,
C.
,
Yamamoto
,
K.
, and
Avellan
,
F.
,
2015
, “
Study of the Vortex-Induced Pressure Excitation Source in a Francis Turbine Draft Tube by Particle Image Velocimetry
,”
Exp. Fluids
,
56
(
12
), p.
215
.
10.
Müller
,
A.
,
Yamamoto
,
K.
,
Alligné
,
S.
,
Yonezawa
,
K.
,
Tsujimoto
,
Y.
, and
Avellan
,
F.
,
2015
, “
Measurement of the Self-Oscillating Vortex Rope Dynamics for Hydroacoustic Stability Analysis
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021206
.
11.
Dörfler
,
P.
,
1980
, “
Modèle Mathématique des Oscillations Excites à Charge Partielle par la Torche de Cavitation Dans les Turbines Francis
,” Bulletin Escher Wyss 1/2, pp. 101–106.
12.
Fanelli
,
M.
,
1989
, “
The Vortex Rope in the Draft Tube of Francis Turbines Operating at Partial Load: A Proposal for a Mathematical Model
,”
J. of Hydr. Res.
,
27
(6), pp. 769–807.
13.
Susan-Resiga
,
R.
,
Ciocan
,
G.
,
Anton
,
I.
, and
Avellan
,
F.
,
2006
, “
Analysis of the Swirling Flow Downstream a Francis Turbine Runner
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
177
189
.
14.
Kuibin
,
P.
,
Okulov
,
V.
,
Susan-Resiga
,
R. F.
, and
Muntean
,
S.
,
2010
, “
Validation of Mathematical Models for Predicting the Swirl Flow and the Vortex Rope in a Francis Turbine Operated at Partial Discharge
,”
IOP Conf. Series: Earth and Enviro. Sci.
,
12
(1), p. 012051.
15.
Barkley
,
D.
,
2006
, “
Linear Analysis of the Cylinder Wake Mean Flow
,”
Europhys. Lett.
,
75
(
5
), pp.
750
756
.
16.
Meliga
,
P.
, and
Gallaire
,
F.
,
2011
, “
Control of Axisymmetric Vortex Breakdown in a Constricted Pipe: Nonlinear Steady States and Weakly Nonlinear Asymptotic Expansions
,”
Physics of Fluids
,
23
, p. 084102.
17.
Theofilis
,
V.
,
2011
, “
Global Linear Instability
,”
Annu. Rev. Mech.
,
43
(
1
), pp.
319
352
.
18.
Meliga
,
P.
,
Pujals
,
G.
, and
Serre
,
E.
,
2012
, “
Sensitivity of 2d Turbulent Flow Past a d-Shaped Cylinder Using Global Stability
,”
Phys. Fluids
,
24
(6), p.
061701
.
19.
Zhang
,
R.
,
Cai
,
Q.
,
Wu
,
J.
,
Wu
,
Y.
,
Liu
,
S.
, and
Zhang
,
L.
,
2005
, “
The Physical Origin of Severe Low-Frequency Pressure Fluctuations in Giant Francis Turbines
,”
Mod. Phys. Lett. B
,
19
(
28–29
), pp.
1527
1530
.
20.
Topor
,
M.
, and
Bristrian
,
D.
,
2012
, “
Localization of the Most Amplified Perturbation in a Vortex Rope Located in Francis Turbine at Partial Discharge
,”
AIP Conference Proceedings
, Vol.
1493
, Vienna, Austria, pp.
1047
1053
.
21.
Pochyly
,
F.
,
Cermak
,
L.
,
Rudolf
,
P.
,
Haban
,
V.
, and
Koutnik
,
J.
,
2009
, “
Assessment of the Steady Swirling Flow Stability Using Amplitude-Frequency Characteristic
,”
3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
, Brno, Czech Republic, Oct. 14–16.
22.
Egorov
,
Y.
, and
Menter
,
F.
,
2008
, “
Development and Application of SST-SAS Turbulence Model in the Desider Project
,”
Advances in Hybrid RANS-LES Modelling
, Springer, Berlin, pp. 261–270.
23.
Reynolds
,
W. C.
, and
Hussain
,
K. M.
,
1972
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow—Part 3: Theoretical Models and Comparisons With Experiments
,”
J. Fluid Mech.
,
54
(
2
), pp.
263
288
.
24.
Viola
,
F.
,
Iungo
,
G. V.
,
Camarri
,
S.
,
Porté-Agel
,
F.
, and
Gallaire
,
F.
,
2014
, “
Prediction of the hub Vortex Instability in a Wind Turbine Wake: Stability Analysis With Eddy-Viscosity Models Calibrated on Wind Tunnel Data
,”
J. Fluid Mech.
,
750
, p.
R1
.
25.
Mettot
,
C.
,
Sipp
,
D.
, and
Bézard
,
H.
,
2014
, “
Quasi-Laminar Stability and Sensitivity Analyses for Turbulent Flows: Prediction of Low-Frequency Unsteadiness and Passive Control
,”
J. Fluid Mech.
,
26
(4), p.
045112
.
26.
Cossu
,
C.
,
Pujals
,
G.
, and
Depardon
,
S.
,
2009
, “
Optimal Transient Growth and Very Large-Scale Structures in Turbulent Boundary Layers
,”
J. Fluid Mech.
,
619
, pp.
79
94
.
27.
Delàlamo
,
J. C.
, and
Jimenez
,
J.
,
2006
, “
Linear Energy Amplification in Turbulent Channels
,”
J. Fluid Mech.
,
559
, pp.
205
213
.
28.
Lehoucq
,
R. B.
,
Sorensen
,
D. C.
, and
Yang
,
C.
,
1998
, “
ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods
,” SIAM, Philadelphia, PA.
29.
Davis
,
T. A.
,
2004
, “
A Column Pre-Ordering Strategy for the Unsymmetric-Pattern Multifrontal Method
,”
ACM Trans. Math. Software
,
30
(
2
), pp.
165
195
.
30.
Khorrami
,
M. R.
,
1991
, “
A Chebyshev Spectral Collocation Method Using a Staggered Grid for the Stability of Cylindrical Flows
,”
Int. J. Numer. Methods Fluids
,
12
(
9
), pp.
825
833
.
31.
Gallaire
,
F.
, and
Chomaz
,
J.
,
2003
, “
Instability Mechanisms in Swirling Flows
,”
Phys. Fluids
,
15
(
9
), pp.
2622
2639
.
32.
Maxworthy
,
T.
, and
Liang
,
H.
,
2005
, “
An Experimental Investigation of Swirling Jets
,”
J. Fluid Mech.
,
525
, pp.
115
159
.
33.
Mantič-Lugo
,
V.
,
Arratia
,
C.
, and
Gallaire
,
F.
,
2014
, “
Self-Consistent Mean Flow Description of the Nonlinear Saturation of the Vortex Shedding in the Cylinder Wake
,”
Phys. Rev. Lett.
,
113
(
8
), p.
084501
.
34.
Giannetti
,
F.
, and
Luchini
,
P.
,
2007
, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
,
581
, pp.
167
197
.
35.
Gallaire
,
F.
, and
Chomaz
,
J.
,
2003
, “
Mode Selection in Swirling Jet Experiments: A Linear Stability
,”
J. Fluid Mech.
,
494
, pp.
145
174
.
36.
Huerre
,
P.
, and
Monkewitz
,
P.
,
1990
, “
Local and Global Instabilities in Spatially Developing Flows
,”
Annu. Rev. Fluid Mech.
,
22
, pp.
476
537
.
37.
Gallaire
,
F.
,
Ruith
,
M.
,
Meiburg
,
E.
,
Chomaz
,
J.
, and
Huerre
,
P.
,
2006
, “
Spiral Vortex Breakdown as a Global Mode
,”
J. Fluid Mech.
,
549
, pp.
71
80
.
38.
Quadri
,
U.
,
Mistry
,
D.
, and
Juniper
,
M.
,
2013
, “
Structural Sensitivity of Spiral Vortex Breakdown
,”
J. Fluid Mech.
,
720
, pp.
558
581
.
39.
Pasche
,
S.
,
Gallaire
,
F.
,
Dreyer
,
M.
, and
Farhat
,
M.
,
2014
, “
Obstacle-Induced Spiral Vortex Breakdown
,”
Exp. Fluids
,
55
, p. 1784.
40.
Marquet
,
O.
,
Sipp
,
D.
, and
Jacquin
,
L.
,
2008
, “
Sensitivity Analysis and Passive Control of Cylinder Flow
,”
J. Fluid Mech.
,
615
, pp.
221
252
.
You do not currently have access to this content.