The theory, design, and use of a focusing laser differential interferometer (FLDI) instrument are described. The FLDI is a relatively simple, nonimaging, common-path polarization interferometer for measuring refractive signals generated by turbulence, as well as small-amplitude acoustics and boundary-layer instabilities. It has in principle a unique ability to look through wind-tunnel windows, ignore sidewall boundary-layers and vibration, and concentrate only on the refractive signal near a pair of sharp beam foci in the core flow. The instrument's low cost and ease of implementation make it a promising alternative to traditional hot-wire anemometry (HWA) and particle-based methods for turbulence characterization. A matrix equation is written for the overall optical behavior of the FLDI, and transfer functions are developed to account for spatial filtering, f/number of the field lenses, various turbulence profiles, etc. Benchtop experiments using a turbulent sonic airjet demonstrate the focusing ability of the FLDI, its frequency response, and unwanted signal rejection. The instrument is also used to optically interrogate the flow in the Penn State Supersonic Wind Tunnel and in USAF AEDC Hypervelocity Tunnel 9, where it made preliminary measurements of freestream disturbance levels and power spectra. A central feature of the FLDI used here is the replacement of traditional fixed Wollaston birefringent prisms with variable Sanderson prisms for separation and recombination of the helium–neon laser beams, and for the accurate setting of micrometer-range beam separation distances required for successful turbulence measurements. The instrument also features phase compensation of the output, where perpendicularly polarized light signals are separately sensed by the twin photodetectors. This provides a unique ability to measure the coherence of turbulent spectra and thus to reject low-coherence noise.

References

1.
Gatski
,
T. B.
, and
Bonnet
,
J. P.
,
2009
,
Compressibility, Turbulence and High-Speed Flow
,
Elsevier Science
,
Amsterdam
, Ch. 4.
2.
Kovasznay
,
L. S. G.
,
1950
, “
The Hot-Wire Anemometer in Supersonic Flow
,”
J. Aeronaut. Sci.
,
17
(
9
), pp.
565
572
, 584.
3.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
,
New York
.
4.
Wilson
,
L. N.
, and
Damkevala
,
R. J.
,
1970
, “
Statistical Properties of Turbulent Density Fluctuations
,”
J. Fluid Mech.
,
43
(
2
), pp.
291
303
.
5.
Smeets
,
G.
, and
George
,
A.
,
1973
, “
Laser Differential Interferometer Applications in Gas Dynamics
,” Institut Saint-Louis Report 28/73, A. Goetz, translator,
Report No. DTIC ADA307459.
6.
Smeets
,
G.
,
1990
, “
Interferometry
,” Institut Saint-Louis Report, Report No. CO-214/90.
7.
Parziale
,
N. J.
,
Shepherd
,
J. E.
, and
Hornung
,
H. G.
,
2013
, “
Differential Interferometric Measurement of Instability in a Hypervelocity Boundary Layer
,”
AIAA J.
,
51
(
3
), pp.
750
754
.
8.
Parziale
,
N. J.
,
2013
, “
Slender-Body Hypervelocity Boundary-Layer Instability
,”
Ph.D. dissertation
, Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA.
9.
Parziale
,
N. J.
,
Shepherd
,
J. E.
, and
Hornung
,
H. G.
,
2014
, “
Free-Stream Density Perturbations in a Reflected-Shock Tunnel
,”
Exp. Fluids
,
55
(
2
), pp.
1
10
.
10.
Parziale
,
N. J.
,
Shepherd
,
J. E.
, and
Hornung
,
H. G.
,
2015
, “
Observations of Hypervelocity Boundary-Layer Instability
,”
J. Fluid Mech.
,
781
, pp.
87
112
.
11.
Schmidt
,
B. E.
, and
Shepherd
,
J. E.
,
2015
, “
Analysis of Focused Laser Differential Interferometry
,”
Appl. Opt.
,
54
(
28
), pp.
8459
8472
.
12.
Fulghum
,
M. R.
,
2014
, “
Turbulence Measurements in High-Speed Wind Tunnels Using the Focusing Laser Differential Interferometer
,”
Ph.D. dissertation
, Mechanical and Nuclear Engineering Department, Pennsylvania State University, University Park, PA.
13.
Sanderson
,
S. R.
,
2005
, “
Simple, Adjustable Beam Splitting Element for Differential Interferometers Based on Photoelastic Birefringence of a Prismatic Bar
,”
Rev. Sci. Instrum.
,
76
(
11
), p.
113703
.
14.
Biss
,
M. M.
,
Settles
,
G. S.
, and
Sanderson
,
S. R.
,
2008
, “
Differential Schlieren-Interferometry With a Simple Adjustable Wollaston-Like Prism
,”
Appl. Opt.
,
47
(
3
), pp.
328
335
.
15.
Lewis
,
M.
,
2010
, “
Tunnel 9: A National Treasure Reborn
,”
Aerosp. Am.
,
48
(
4
), pp.
42
47
.
16.
Gerald
,
A.
, and
Burch
,
J. M.
,
1994
,
Introduction to Matrix Methods in Optics
,
Dover
,
New York
.
17.
Collett
,
E.
,
2005
,
Field Guide to Polarization
,
SPIE
,
Bellingham, WA
.
18.
Weisstein
,
E. W.
, “
Fourier Transform—Gaussian
,”
Wolfram MathWorld
, Champaign, IL.
19.
Smits
,
A. J.
, and
Dussauge
,
J. P.
,
1996
,
Turbulent Shear Layers in Supersonic Flow
,
American Institute of Physics
,
Woodbury, New York
, Sec. 5.3.
20.
Laufer
,
J.
,
1961
, “
Aerodynamic Noise in Supersonic Wind Tunnels
,”
J. Aerosp. Sci.
,
28
(
9
), pp.
685
692
.
21.
Potter
,
J. L.
,
1974
, “
Low-Density Hypersonic Wind Tunnels
,”
Molecular Beams and Low Density Gas Dynamics
,
Marcel Dekker
,
New York
, pp.
183
311
.
22.
von Kármán
,
T.
,
1948
, “
Progress in the Statistical Theory of Turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
,
34
(
11
), pp.
530
539
.
23.
Wygnanski
,
I.
, and
Fiedler
,
H.
,
1969
, “
Some Measurements in the Self-Preserving Jet
,”
J. Fluid Mech.
,
38
(
3
), pp.
577
612
.
24.
Hussein
,
J. H.
,
Capp
,
S. P.
, and
George
,
W. K.
,
1994
, “
Velocity Measurements in a High-Reynolds-Number, Momentum-Conserving, Axisymmetric, Turbulent Jet
,”
J. Fluid Mech.
,
258
, pp.
31
75
.
25.
Panda
,
J.
, and
Seasholtz
,
R.
,
2002
, “
Experimental Investigation of Density Fluctuations in High-Speed Jets and Correlation With Generated Noise
,”
J. Fluid Mech.
,
450
, pp.
97
130
.
26.
Witze
,
P. O.
,
1974
, “
Centerline Velocity Decay of Compressible Free Jets
,”
AIAA J.
,
12
(
4
), pp.
417
418
.
27.
Chen
,
C. J.
, and
Rodi
,
W.
,
1980
,
Vertical Turbulent Buoyant Jets: A Review of Experimental Data
,
Pergamon Press
,
Oxford, UK
.
28.
Schneider
,
S. P.
,
2008
, “
Development of Hypersonic Quiet Tunnels
,”
J. Spacecr. Rockets
,
45
(
4
), pp.
641
664
.
29.
Williams
,
O. J. H.
,
Nguyen
,
T.
,
Schreyer
,
A. M.
, and
Smits
,
A. J.
,
2015
, “
Particle Response Analysis for Particle Image Velocimetry in Supersonic Flows
,”
Phys. Fluids
,
27
(
7
), p.
076101
.
30.
Rampy
,
R.
,
Gavel
,
D.
,
Dillon
,
D.
, and
Thomas
,
S.
,
2012
, “
Production of Phase Screens for Simulation of Atmospheric Turbulence
,”
Appl. Opt.
,
51
(
36
), pp.
8769
8778
.
You do not currently have access to this content.