Local sensitivities are explored using dual-number-automatic-differentiation (DNAD) across three mathematical models of physical systems that have increasing complexity. The models are: (1) a model for the approach of a sphere to free fall; (2) the Taylor-analogy-breakup (TAB) model for liquid droplet atomization; and, (3) an evaluation of the BHR model of turbulence for the development of one-dimensional Rayleigh–Taylor driven material mixing. Sensitivity and functional shape parameters are developed that permit a relative study to be quickly performed for each model. Furthermore, compensating errors, measurement parameter sensitivity, and feature sensitivities are investigated. The test problems consider transient (initial condition effects), steady state (final functional forms), and measures of functional shape. Reduced model forms are explored and selected according to sensitivity. Aside from the local sensitivity studies of the models and associated results, DNAD is shown to be one of several useful, quickly implemented tools to investigate a variety of sensitivity effects in models and together with the present results may serve as a means to simplify a model or focus future model developments and associated experiments.

References

1.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E. M.
, eds.,
2000
,
Sensitivity Analysis
,
Wiley
,
Chichester, NY
.
2.
Ilinca
,
F.
,
Pelletier
,
D.
, and
Borggaard
,
J.
,
2007
, “
A Continuous Second-Order Sensitivity Equation Method for Time-Dependent Incompressible Laminar Flows
,”
Int. J. Numer. Meth. Fluids
,
55
, pp.
565
587
.10.1002/fld.1477
3.
Yu
,
W.
, and
Blair
,
M.
,
2010
, “
DNAD: A Simple Tool for Automatic Differentiation of Fortran Codes Using Dual Numbers
,”
Proc. 35th Annual Dayton-Cincinnati Aerospace Science Symposium
,
Dayton, OH
.
4.
Spall
,
R. E.
, and
Yu
,
W.
, “
Imbedded Dual-Number Automatic Differentiation for CFD Sensitivity Analysis
,”
ASME J. Fluids Eng.
(accepted).
5.
Bischof
,
C. H.
,
Buecker
,
H.
, and
Rasch
,
A.
,
2004
, “
Sensitivity Analysis of Turbulence Models Using Automatic Differentiation
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
510
522
.10.1137/S1064827503426723
6.
Bischof
,
C. H.
,
Bucker
,
H. M.
,
Rasch
,
A.
,
Slusanschi
,
E.
, and
Lang
,
B.
,
2007
, “
Automatic Differentiation of the General-Purpose Computational Fluid Dynamics Package FLUENT
,”
ASME J. Fluids Eng.
,
129
(
5
), pp.
652
658
.10.1115/1.2720475
7.
Bardow
,
A.
,
Bischof
,
C. H.
,
Bückerc
,
H. M.
,
Dietzeb
,
G.
,
Kneerb
,
R.
,
Leefkenb
,
A.
,
Marquardta
,
W.
,
Renzb
,
U.
, and
Slusanschic
,
E.
,
2008
, “
Sensitivity-Based Analysis of the k-ε Model for the Turbulent Flow Between Two Plates
,”
Chem. Eng. Sci.
,
63
, pp.
4763
4775
.10.1016/j.ces.2007.12.029
8.
Atherton
,
R. W.
,
Schainker
,
R. B.
, and
Ducot
,
E. R.
,
1975
, “
On the Statistical Sensitivity Analysis of Models for Chemical Kinetics
,”
AIChE J.
,
21
, pp.
441
448
.10.1002/aic.690210304
9.
Brown
,
N.
, and
Revzan
,
K.
,
2005
, “
Comparative Sensitivity Analysis of Transport Properties and Reaction Rate Coefficients
,”
Int. J. Chem. Kin.
,
37
(
9
), pp.
538
553
.10.1002/kin.20107
10.
Kirkman
,
R. D.
, and
Metzger
,
M.
,
2008
, “
Sensitivity Analysis of Low Reynolds Number Channel Flow Using the Finite Volume Method
,”
Int. J. Numer. Meth. Fluids
,
57
, pp.
1023
1045
.10.1002/fld.1669
11.
Vaidyanathan
,
R.
,
Senocak
, I
.
,
Wu
,
J.
, and
Shyy
,
W.
,
2003
, “
Sensitivity Evaluation of a Transport-Based Turbulent Cavitation Model
,”
ASME J. Fluids Eng.
,
125
(
3
), pp.
447
458
.10.1115/1.1566048
12.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The TAB Method for Numerical Calculation of Spray Droplet Breakup
,” Los Alamos National Laboratory, Report No. LA-UR-87-2105.
13.
Besnard
,
D. C.
,
Harlow
,
F. H.
, and
Rauenzahn
,
R. M.
,
1987
, “
Conservation and Transport Properties of Turbulence With Large Density Variations
,” Los Alamos National Laboratory, Report No. LA-10911-MS.
14.
Banerjee
,
A.
,
Gore
,
R.
, and
Andrews
,
M. J.
,
2010
, “
Development and Validation of a Turbulent-Mix Model for Variable-Density and Compressible Flows
,”
Phys. Rev. E
,
82
(
4
), p.
046309
.10.1103/PhysRevE.82.046309
15.
Banerjee
,
A.
, and
Andrews
,
M. J.
,
2006
, “
Statistically Steady Measurements of Rayleigh-Taylor Mixing in a Gas Channel
,”
Phys. Fluids
,
18
(
3
),
p
. 035107.10.1063/1.2185687
16.
Banerjee
,
A.
,
Kraft
,
W. N.
, and
Andrews
,
M. J.
,
2010
, “
Detailed Measurements of a Statistically Steady Rayleigh-Taylor Mixing Layer From Small to High Atwood Numbers
,”
J. Fluid Mech.
,
659
, pp.
127
190
.10.1017/S0022112010002351
17.
Andrews
,
M. J.
,
1983
, “
The k-ε model Applied to the Development of Rayleigh-Taylor Instability
,” Computational Fluid Dynamics Unit, Imperial College of Science and Technology, London University, Report No. CFDU/2083/13.
18.
Snider
,
D. M.
, and
Andrews
,
M. J.
,
1996
, “
The Simulation of Mixing Layers Driven by Compound Buoyancy and Shear
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
370
376
.10.1115/1.2817388
19.
Steinkamp
,
M. J.
,
1996
, “
Spectral Analysis of the Turbulent Mixing of Two Fluids
,” Ph.D. thesis, Los Alamos National Laboratory, Report No. LA-13123-T.
20.
Ristorcelli
,
J. R.
, and
Clark
,
T. T.
,
2004
, “
Rayleigh–Taylor Turbulence: Self-Similar Analysis and Direct Numerical Simulations
,”
J. Fluid Mech.
,
507
, pp.
213
253
.10.1017/S0022112004008286
21.
Andrews
,
M. J.
,
1986
, “
Turbulent Mixing by Rayleigh Taylor Instability
,” Ph.D. thesis, Imperial College of Science and Technology, London, UK.
22.
Andrews
,
M. J.
, and
Spalding
,
D. B.
,
1990
, “
A Simple Experiment to Investigate Two-Dimensional Mixing by Rayleigh Taylor Instability
,”
Phys. Fluids A
,
2
, pp.
922
927
.10.1063/1.857652
23.
Celik
, I
. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, Freitas, C. J., Coleman, H., and Raad, P. E.,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
You do not currently have access to this content.