Time-resolved stereoscopic particle image velocimetry (TR-ST-PIV) measurements were performed to compare the velocity and vorticity field, and the three-dimensional high intensity vorticity structures between a round turbulent single-phase jet and a particle-laden jet in crossflow. The experiments involved steady fresh water jet sources with a particle mass loading of ∼2.0% injected into steady fresh water crossflows. The TR-ST-PIV system was combined with a phase discrimination method that separates two-phase stereo PIV images into dispersed phase images and continuous phase images that are analyzed by using particle tracking velocimetry and stereo-PIV algorithms, respectively. The analysis shows the importance of phase separation for accurate velocity results. It provides instantaneous velocity fields where the dispersed phase preferentially concentrated in regions of low vorticity with the velocity not matching the continuous phase. The jet and the particle-laden jets trajectories are compared to each other and with results in the literature. Similarly, a comparison of mean velocity and vorticity fields between both flows suggest enhanced mixing in the particle-laden jet due to the effects of the dispersed phased which lowered the centerline velocities and enhanced the penetration in the cross-stream direction of the continuous phase. The Taylor’s frozen flow hypothesis is applied to reconstruct the 3D high intensity vorticity structures in a volume. The visualization of the three-dimensional structures corresponding to the intermediate scales of the flow shows slightly elongated structures preferentially aligned with the jet centerline axis.

References

1.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
, 1989, “
Hydrodynamic Measurements of Jets in Crossflow for Gas Turbine Film Cooling Applications
,”
ASME J. Turbomach.
,
111
(
2
), pp.
139
145
.
2.
Peterson
,
S.
, and
Plesniak
,
M.
, 2002, “
Short-Hole Jet-in-Crossflow Velocity Field and Its Relationship to Film-Cooling Performance
,”
Exp. Fluids
,
33
(
6
), pp.
889
898
.
3.
Rachner
,
M.
,
Becker
,
J.
,
Hassa
,
C.
, and
Doerr
,
T.
, 2002, “
Modelling of the Atomization of a Plain Liquid Fuel Jet in Crossflow at Gas Turbine Conditions
,”
Aerosp. Sci. Technol.
,
6
(
7
), pp.
495
506
.
4.
Moin
,
P.
, and
Apte
,
S. V.
, 2006, “
Large-Eddy Simulation of Realistic Gas Turbine Combustors
,”
AIAA J.
,
44
(
4
), pp.
698
708
.
5.
Bruneaux
,
G.
, 2002, “
A Study of Mixture Formation in Direct Injection Diesel Like Conditions Using Quantitative Fuel Concentration Visualizations in a Gaseous Fuel Jet
,”
SAE International
,
Warrendale, PA
.
6.
Santiago
,
J. G.
and
Dutton
,
J. C.
, 1997, “
Velocity Measurements of a Jet Injected Into a Supersonic Crossflow
,”
J. Propul. Power
,
13
(
2
), pp.
264
273
.
7.
Ben-Yakar
,
A.
,
Mungal
,
M. G.
, and
Hanson
,
R. K.
, 2006, “
Time Evolution and Mixing Characteristics of Hydrogen and Ethylene Transverse Jets in Supersonic Crossflows
,”
Phys. Fluids
,
18
(
2
), p.
026101
.
8.
Chai
,
X.
, and
Mahesh
,
K.
, 2010, “
Simulations of High Speed Turbulent Jets in Crossflow
,” 40th Fluid Dynamics Conference and Exhibition, Paper AIAA 2010-4603, July 2010, Chicago, Illinois.
9.
Gao
,
J.
,
Xu
,
C.
,
Lin
,
S.
,
Yang
,
G.
, and
Guo
,
Y.
, 2001, “
Simulations of Gas-Liquid-Solid 3-Phase Flow and Reaction in FCC Riser Reactors
,”
AIChE J.
,
47
(
3
), pp.
677
692
.
10.
Qureshi
,
M. M. R.
,
Zhu
,
C.
,
Lin
C.-H.
, and
Fan
,
L.-S.
, 2006, “
Effect of Nozzle Fan Angle on Sprays in Gas-Solid Riser Flow
,”
China Particuol.
,
4
(
3–4
), pp.
147
152
.
11.
Margason
,
R. J.
, 1993, “
Fifty Years of Jet in Cross Flow Research
,” AGARD-CP
534
, Paper 1.
12.
Kamotani
,
Y.
, and
Greber
,
I.
, 1972, “
Experiments on a Turbulent Jet in a Cross Flow
,”
AIAA J.
,
10
, pp.
1425
1429
.
13.
Andreopoulos
,
J.
, and
Rodi
,
W.
, 1984, “
Experimental Investigation of Jets in a Crossflow
,”
J. Fluid Mech.
,
138
, pp.
93
127
.
14.
Krothapalli
,
A.
Lourenco
,
L.
, and
Buchlin
,
J. M.
, 1990, “
Separated Flow Upstream of a Jet in a Crossflow
,”
AIAA J.
,
28
, pp.
414
420
.
15.
Fric
,
T. F.
, and
Roshko
,
A.
, 1994, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
16.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
, 1996, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.
17.
Hasselbrink
,
E. F.
, and
Mungal
,
M. G.
, 2001, “
Transverse Jets and Jet Flames. Part 1. Scaling Laws for Strong Transverse Jets
,”
J. Fluid Mech.
,
443
, pp.
1
25
.
18.
Hasselbrink
,
E. F.
, and
Mungal
,
M. G.
, 2001, “
Transverse Jets and Jet Flames. Part 2. Velocity and OH Field Imaging
,”
J. Fluid Mech.
,
443
, pp.
27
68
.
19.
Cortelezzi
,
L.
, and
Karagozian
,
A. R.
, 2001, “
On the Formation of the Counter-rotating Vortex Pair in Transverse Jets
,”
J. Fluid Mech.
,
446
, pp.
347
373
.
20.
Megerian
,
S.
,
Davitian
J.
,
de
B.
Alves
,
L. S.
, and
Karagozian
,
A. R.
, 2007, “
Transverse-Jet Shear-Layer Instabilities. Part 1. Experimental Studies
,”
J. Fluid Mech.
,
593
, pp.
93
129
.
21.
Smith
,
S. H.
, and
Mungal
,
M. G.
, 1998, “
Mixing, Structure and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
,
357
(
1
), pp.
83
122
.
22.
Su
,
L. K.
, and
Mungal
,
M. G.
, 2004, “
Simultaneous Measurements of Scalar and Velocity Field Evolution in Turbulent Crossflowing Jets
,”
J. Fluid Mech.
,
513
, pp.
1
45
.
23.
Shan
,
J. W.
, and
Dimotakis
,
P. E.
, 2006, “
Reynolds-Number Effects and Anisotropy in Transverse-Jet Mixing
,”
J. Fluid Mech.
,
566
, p.
47
.
24.
Sherif
,
S. A.
, and
Pletcher
,
R. H.
, 1989, “
Measurements of the Flow and Turbulence Characteristics of Round Jets in Crossflow
,”
ASME J. Fluids Eng.
,
111
(
2
), p.
165
.
25.
Broadwell
,
J. E.
, and
Breidenthal
,
R. E.
, 1984, “
Structure and Mixing of a Transverse Jet in Incompressible Flow
,”
J. Fluid Mech.
,
148
, pp.
405
412
.
26.
Karagozian
,
A. R.
, 1986, “
An Analytical Model for the Vorticity Associated With a Transverse Jet
,”
AIAA J.
,
24
, pp.
429
436
.
27.
Muppidi
,
S.
, and
Mahesh
,
K.
, 2005, “
Study of Trajectories of Jets in Crossflow Using Direct Numerical Simulations
,”
J. Fluid Mech.
,
530
, pp.
81
100
.
28.
Muppidi
,
S.
, and
Mahesh
,
K.
, 2006, “
Two-Dimensional Model Problem to Explain Counter-rotating Vortex Pair Formation in a Transverse Jet
,”
Phys. Fluids
,
18
(
8
), p.
085103
.
29.
de
B.
Alves
,
L. S.
,
Kelly
,
R. E.
, and
Karagozian
,
A. R.
, 2008, “
Transverse-Jet Shear-Layer Instabilities. Part 2. Linear Analysis for Large Jet-to-Crossflow Velocity Ratio
,”
J. Fluid Mech.
,
602
, pp.
383
401
.
30.
Muppidi
,
S.
, and
Mahesh
,
K.
, 2007, “
Direct Numerical Simulation of Round Turbulent Jets in Crossflow
,”
J. Fluid Mech.
,
574
, p.
59
.
31.
Denev
,
J. A.
,
Fröhlich
,
J.
, and
Bockhorn
,
H.
, 2009, “
Large Eddy Simulation of a Swirling Transverse Jet Into a Crossflow With Investigation of Scalar Transport
,”
Phys. Fluids
,
21
(
1
), p.
015101
.
32.
Denev
,
J. A.
,
Fröhlich
,
J.
,
Falconi
,
C. J.
, and
Bockhorn
,
H.
, 2010, “
Direct Numerical Simulation, Analysis and Modelling of Mixing Processes in a Round Jet in Crossflow
,”
Micro and Macro Mixing
,
H.
Bockhorn
,
D.
Mewes
,
W.
Peukert
, and
H.-J.
Warnecke
, Eds.,
Springer
,
Berlin
, pp.
143
164
.
33.
Herrmann
,
M.
, 2010, “
Detailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061506
.
34.
New
,
T. H.
,
Lim
,
T. T.
, and
Luo
,
S. C.
, 2006, “
Effects of Jet Velocity Profiles on a Round Jet in Cross-flow
,”
Exp. Fluids
,
40
(
6
), pp.
859
875
.
35.
Balachandar
,
S.
, and
Eaton
,
J. K.
, 2010, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
111
133
.
36.
Longmire
,
E. K.
, and
Eaton
,
J. K.
, 1992, “
Structure of a Particle-Laden Round Jet
,”
J. Fluid Mech.
,
236
(
1
), pp.
217
257
.
37.
Chung
,
J. N.
, and
Troutt
,
T. R.
, 1988, “
Simulation of Particle Dispersion in an Axisymmetric Jet
,”
J. Fluid Mech.
,
186
, pp.
199
222
.
38.
Cheng
,
Y.
,
Pothos
,
S.
, and
Diez
F. J.
, 2010, “
Phase Discrimination Method for Simultaneous Two-Phase Separation in Time-Resolved Stereo PIV Measurements
,”
Exp. Fluids
,
49
(
6
), pp.
1375
1391
.
39.
Khalitov
,
D. A.
, and
Longmire
,
E. K.
, 2002, “
Simultaneous Two-Phase PIV by Two-Parameter Phase Discrimination
,”
Exp. Fluids
,
32
(
2
), pp.
252
268
.
40.
Jakobsen
,
M. L.
,
Easson
,
W. J.
,
Greated
,
C. A.
, and
Glass
,
D. H.
, 1996, “
Particle Image Velocimetry: Simultaneous Two-Phase Flow Measurements
,”
Meas. Sci. Technol.
,
7
, p.
1270
.
41.
Kiger
,
K. T.
, and
Pan
,
C.
, 2000, “
PIV Technique for the Simultaneous Measurement of Dilute Two-Phase Flows
,”
ASME J. Fluids Eng.
,
122
, p.
811
.
42.
Towers
,
D. P.
,
Towers
,
C. E.
,
Buckberry
,
C. H.
, and
Reeves
M.
, 1999, “
A Colour PIV System Employing Fluorescent Particles for Two-Phase Flow Measurements
,”
Meas. Sci. Technol.
,
10
, p.
824
.
43.
Poelma
,
C.
,
Westerweel
,
J.
, and
Ooms
,
G.
, 2006, “
Turbulence Statistics From Optical Whole-Field Measurements in Particle-Laden Turbulence
,”
Exp. Fluids
,
40
(
3
), pp.
347
363
.
44.
Brady
,
M. R.
,
Telionis
,
D. P.
,
Vlachos
,
P. P.
, and
Yoon
,
R. H.
, 2006, “
Evaluation of Multiphase Flotation Models in Grid Turbulence Via Particle Image Velocimetry
,”
Int. J. Min. Process
,
80
(
2–4
), pp.
133
143
.
45.
Fan
,
J.
,
Xu
,
S.
, and
Wang
,
D.
, 2010, “
PDA Measurements of Two-Phase Flow Structure and Particle Dispersion for a Particle-Laden Jet in Crossflow
,”
J. Hydrodyn. Ser. B
,
22
(
1
), pp.
9
18
.
46.
Matsuda
,
T.
, and
Sakakibara
,
J.
, 2005, “
On the Vortical Structure in a Round Jet
,”
Phys. Fluids
,
17
(
2
), p.
025106
.
47.
Ganapathisubramani
,
B.
,
Lakshminarasimhan
,
K.
, and
Clemens
,
N. T.
, 2007, “
Determination of Complete Velocity Gradient Tensor by Using Cinematographic Stereoscopic PIV in a Turbulent Jet
,”
Exp. Fluids
,
42
(
6
), pp.
923
939
.
48.
Hori
,
T.
, and
Sakakibara
,
J.
, 2004, “
High-Speed Scanning Stereoscopic PIV for 3D Vorticity Measurement in Liquids
,”
Meas. Sci. Technol.
,
15
(
6
), pp.
1067
1078
.
49.
Westerweel
,
J.
,
Dabiri
,
D.
, and
Gharib
,
M.
, 1997, “
The Effect of a Discrete Window Offset on the Accuracy of Cross-Correlation Analysis of Digital PIV Recordings
,”
Exp. Fluids
,
23
(
1
), pp.
20
28
.
50.
Westerweel
,
J.
, and
Scarano
,
F.
, 2005, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.
51.
Soloff
,
S. M.
,
Adrian
,
R. J.
, and
Liu
,
Z. C.
, 1997, “
Distortion Compensation for Generalized Stereoscopic Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
, pp.
1441
1454
.
52.
Seol
,
D.-G.
, and
Socolofsky
,
S. A.
, 2008, “
Vector Post-processing Algorithm for Phase Discrimination of Two-Phase PIV
,”
Exp. Fluids
,
45
(
2
), pp.
223
239
.
53.
Brücker
,
C.
, 2000, “
PIV in Two-Phase Flows
,” von Karman Institute for fluid dynamics, Lecture Series 2000-01, Rhode-Saint-Genese, Belgium.
54.
Ohmi
,
K.
, and
Li
,
H. Y.
, 2000, “
Particle-Tracking Velocimetry With New Algorithms
,”
Meas. Sci. Technol.
,
11
, p.
603
.
55.
Rudman
,
M.
, 1996, “
Simulation of the Near Field of a Jet in a Cross Flow
,”
Exp. Therm. Fluid Sci.
,
12
(
2
), pp.
134
141
.
56.
Crowe
,
C. T.
, 2000, “
On Models for Turbulence Modulation in Fluid-Particle Flows
,”
Int. J. Multiphase Flow
,
26
(
5
), pp.
719
727
.
57.
Gore
,
R.
, and
Crowe
,
C.
, 1989, “
Effect of Particle Size on Modulating Turbulent Intensity
,”
Int. J. Multiphase Flow
,
15
(
2
), pp.
279
285
.
58.
Diez
,
F. J.
,
Bernal
,
L. P.
, and
Faeth
,
G. M.
, 2005, “
PLIF and PIV Measurements of the Self-Preserving Structure of Steady Round Buoyant Turbulent Plumes in Crossflow
,”
Int. J. Heat Fluid Flow
,
26
(
6
), pp.
873
882
.
59.
Diez
,
F. J.
,
Bernal
,
L. P.
, and
Faeth
,
G. M.
, 2005, “
Self-Preserving Mixing Properties of Steady Round Nonbuoyant Turbulent Jets in Uniform Crossflows
,”
ASME J. Heat Transfer
,
127
(
8
), p.
877
.
60.
Lin
,
C. C.
, 1953, “
On Taylor’s Hypothesis in Wind Tunnel Turbulence
,”
Quart. Appl. Math
,
10
, pp.
295
306
.
61.
Ganapathisubramani
,
B.
,
Lakshminarasimhan
,
K.
, and
Clemens
,
N. T.
, 2008, “
Investigation of Three-Dimensional Structure of Fine Scales in a Turbulent Jet by Using Cinematographic Stereoscopic Particle Image Velocimetry
,”
J. Fluid Mech.
,
598
, pp.
141
175
.
62.
Rivero
,
A.
,
Ferre
,
J. A.
, and
Giralt
,
F.
, 2001, “
Organized Motions in a Jet in Crossflow
,”
J. Fluid Mech.
,
444
, pp.
117
149
.
63.
Taylor
,
G. I.
, 1938, “
The Spectrum of Turbulence
,”
Proc. R. Soc. London
,
164
(
919
), pp.
476
490
.
64.
Doorne
,
C. W. H.
, and
Westerweel
,
J.
, 2006, “
Measurement of Laminar, Transitional and Turbulent Pipe Flow Using Stereoscopic-PIV
,”
Exp. Fluids
,
42
(
2
), pp.
259
279
.
65.
Moisy
,
F.
, and
Jiménez
,
J.
, 2004, “
Geometry and Clustering of Intense Structures in Isotropic Turbulence
,”
J. Fluid Mech.
,
513
, pp.
111
133
.
You do not currently have access to this content.