In the most part of an enclosed rotor-stator system with separated boundary layers, the flow structure is characterized by a central core rotating as a solid body with a constant core-swirl ratio. This behavior is not always observed in an isolated rotor-stator cavity, i.e., without any centripetal or centrifugal throughflow, opened to the atmosphere at the periphery: Recent works have brought to evidence an increasing level of the core-swirl ratio from the periphery to the axis, as in the case of a rotor-stator with superposed centripetal flow. The present work is based on an asymptotical approach in order to provide a better understanding of this process. Assuming that the boundary layers behave as on a single rotating disk in a stationary fluid on the rotor side, and on a stationary disk in a rotating fluid on the stator side, new analytical relations are obtained for the core-swirl ratio, the static pressure on the stator, and also the total pressure at midheight of the cavity. An experimental study is performed: Detailed measurements provide data for several values of the significant dimensionless parameters: 1.14106×Re1.96, 0.05G0.10, and 0.07104×Ek2.65. The analysis of the results shows a good agreement between the theoretical solution and the experimental results. The analytical model can be used to provide a better understanding of the flow features. In addition, radial distributions of both core-swirl ratio, dimensionless static pressure on the stator, as well as dimensionless total pressure at midheight of the cavity, which are of interest to the designers, can be computed with an acceptable accuracy knowing the levels of the preswirl coefficient Kp and the solid body rotation swirl coefficient KB.

1.
Batchelor
,
G. K.
, 1951, “
Note on a Class of Solutions of the Navier–Stokes Equations Representing Steady Rotationally-Symmetric Flow
,”
Q. J. Mech. Appl. Math.
0033-5614,
4
, pp.
29
41
.
2.
Stewartson
,
K.
, 1953, “
On the Flow Between Two Rotating Coaxial Discs
,”
Proc. Cambridge Philos. Soc.
0068-6735
49
, pp.
333
341
.
3.
Kurokawa
,
J.
, and
Toyokura
,
T.
, 1972, “
Study on Axial Thrust of Radial Flow Turbomachinery
,”
Second International JSME Symposium. Fluid Machinery and Fluidics
, Tokyo, Japan, Vol.
2
, p.
31
.
4.
Debuchy
,
R.
,
Dyment
,
A.
,
Muhe
,
H.
, and
Micheau
,
P.
, 1998, “
Radial Inflow Between a Rotating and a Stationary Disc
,”
Eur. J. Mech. B/Fluids
0997-7546,
17
(
6
), pp.
791
810
.
5.
Schlichting
,
H.
, 1979,
Boundary-Layer Theory
, 7th ed.,
McGraw-Hill
,
New York
.
6.
Poncet
,
S.
,
Chauve
,
M. P.
, and
Le Gal
,
P.
, 2005, “
Turbulent Rotating Disk Flow With Inward Throughflow
,”
J. Fluid Mech.
0022-1120,
522
, pp.
253
262
.
7.
Poncet
,
S.
,
Chauve
,
M. P.
, and
Schiestel
,
R.
, 2005, “
Batchelor Versus Stewartson Flow Structures in a Rotor-Stator Cavity With Throughflow
,”
Phys. Fluids
1070-6631,
17
(
7
), p.
075110
.
8.
Poncet
,
S.
,
Chauve
,
M. P.
, and
Le Gal
,
P.
, 2008, “
Lois analytiques pour les écoulements en cavité rotor-stator
,”
Mécanique & Industries
,
9
(
3
), pp.
227
236
.
9.
Debuchy
,
R.
,
Abdel Nour
,
F.
, and
Bois
,
G.
, 2008, “
On the Flow Behavior in Rotor-Stator System With Superimposed Flow
,”
Int. J. Rotating Mach.
1023-621X,
10
(
1155
), p.
719510
.
10.
Owen
,
J. M.
, and
Rogers
,
R. H.
, 1989,
Flow and Heat Transfer in Rotating-Disc System: Rotor-Stator System
, Vol.
1
,
W. D.
Morris
, ed.,
Wiley
,
New York
.
11.
Itoh
,
M.
,
Yamada
,
Y.
,
Imao
,
S.
, and
Gonda
,
M.
, 1992, “
Experiments on Turbulent Flow Due to an Enclosed Rotating Disk
,”
Exp. Therm. Fluid Sci.
0894-1777,
5
(
3
), pp.
359
368
.
12.
Elena
,
L.
, and
Schiestel
,
R.
, 1995, “
Turbulence Modeling of Confined Flow in Rotating Disk Systems
,”
AIAA J.
0001-1452,
33
, pp.
812
821
.
13.
Szeri
,
A. Z.
,
Schneider
,
S. J.
,
Labbe
,
F.
, and
Kaufman
,
H. N.
, 1983, “
Flow Between Two Rotating Disks. Part 1. Basic Flow
,”
J. Fluid Mech.
0022-1120,
134
, pp.
103
131
.
14.
Dijkstra
,
D.
, and
Van Heijst
,
G. J. F.
, 1983, “
The Flow Between Two Finite Rotating Disks Enclosed by a Cylinder
,”
J. Fluid Mech.
0022-1120,
128
, pp.
123
154
.
15.
Debuchy
,
R.
,
Della Gatta
,
S.
,
D’Haudt
,
E.
,
Bois
,
G.
, and
Martelli
,
F.
, 2007, “
Influence of External Geometrical Modifications on the Flow Behaviour of a Rotor-Stator System: Numerical and Experimental Investigation
,”
Proc. Inst. Mech. Eng., Part A: J. Power and Energy
0957-6509,
221
(
7
), pp.
857
863
.
16.
Abdel Nour
,
F.
,
Poncet
,
S.
,
Debuchy
,
R.
, and
Bois
,
G.
, 2009, “
A Combined Analytical, Experimental and Numerical Investigation of Turbulent Air Flow Behaviour in a Rotor-Stator Cavity
,”
Mécanique & Industries
,
10
(
3–4
), pp.
195
201
.
17.
Daily
,
J. W.
, and
Nece
,
R. E.
, 1960, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
0021-9223,
82
, pp.
217
232
.
18.
D’Haudt
,
E.
, 2006, “
Etude expérimentale de l’influence des conditions périphériques sur un écoulement turbulent de type rotor-stator
,” Ph.D. thesis, Université des Sciences et Technologies de Lille, Lille, France.
You do not currently have access to this content.