Flow properties of magnetorheological (MR) fluids are greatly altered by the application of a magnetic field. The design, optimization, and control of novel devices that exploit MR fluid behavior in multidegree of freedom applications require three dimensional models characterizing the coupling of magnetic behavior to mechanical behavior in MR fluids. The authors have derived 3D MR fluid models based on multiscale kinetic theory. The underlying bases of the models are summarized, with phenomenological empiricism distinguished from multiscale first principles, and the models’ ability to capture the experimentally measured mechanical response of a MR fluid-based damper to specified magnetic fields is assessed. The results of this comparison are that the kinetic theory-based models both relate macroscale MR fluid behavior to a first-principles description of magnetomechanical coupling at the microscale and possess the flexibility to best match the measured behavior of a particular MR fluid device observed in our experiments.

1.
Rabinow
,
J.
, 1948, “
The Magnetic Fluid Clutch
,”
Trans. Am. Inst. Electr. Eng.
0096-3860,
67
, pp.
1308
1315
.
2.
Carlson
,
J. D.
,
Catanzarite
,
D. N.
, and
St. Clair
,
K. A.
, 1996, “
Commercial Magneto-Rheological Fluid Devices
,”
Proceedings of the Fifth International Conference on ER Fluids, MR Suspensions and Associated Technology
,
World Scientifc
,
Singapore
, pp.
20
28
.
3.
Jolly
,
M. R.
, and
Carlson
,
J. D.
, 1996, “
A Controllable Squeeze Film Damper Using Magnetorheological Fluid
,”
Proceedings of Actuator 96
, Bremen, Germany, June 26–28, pp.
333
336
.
4.
Kamath
,
G. M.
,
Hurt
,
M. K.
, and
Wereley
,
N. M.
, 1996, “
Analysis and Testing of Bingham Plastic in Semi-Active Electrorheological Fluid Dampers
,”
Smart Mater. Struct.
0964-1726,
5
, pp.
576
590
.
5.
Kamath
,
G. M.
,
Wereley
,
N. M.
, and
Jolly
,
M. R.
, 1996, “
Analysis and Testing of a Model-Scale Magnetorheological Fluid Helicopter Lag Mode Damper
,”
J. Am. Helicopter Soc.
0002-8711,
44
, pp.
234
248
.
6.
Spencer
,
B. F.
,
Yang
,
G.
,
Carlson
,
J. D.
, and
Sain
,
M. K.
, 1998, “
Smart Dampers for Seismic Protection of Structures: A Full-Scale Study
,”
Proceedings of the Second World Conference on Structural Control (2WCSC)
,
Kyoto, Japan
, June 28–July 1, pp.
417
426
.
7.
Yang
,
G.
, 2001, “
Large-Scale Magnetorheological Fluid Damper for Vibration Mitigation: Modeling, Testing and Control
,” University of Notre Dame.
8.
Yang
,
G.
,
Jung
,
H. J.
, and
Spencer
,
J. B. F.
, 2001, “
Dynamic Modeling of Full-Scale MR Dampers for Civil Engineering Applications
,”
Proceedings of the US-Japan Workshop on Smart Structures for Improved Seismic Performance in Urban Region
,
Seattle, WA
, Aug. 14–16.
9.
Bansbach
,
E. E.
, 1998, “
Torque Transfer Apparatus Using Magnetorheological Fluids
.”
10.
Gopalswamy
,
S.
, and
Jones
,
G. L.
, 1998, “
Magnetorheological Transmission Clutch
.”
11.
Kavlicoglu
,
B.
,
Gordaninejad
,
F.
,
Evrensel
,
C. A.
,
Cobanoglu
,
N.
,
Xin
,
M.
,
Heine
,
C.
,
Fuchs
,
A.
, and
Korol
,
G.
, 2002, “
A High-Torque Magneto-Rheological Fluid Clutch
,”
Proceedings of the SPIE Conference on Smart Materials and Structures
,
San Diego
, Nov. 14.
12.
Lampe
,
D.
, and
Grundmann
,
R.
, 2000, “
Transitional and Solid State Behavior of a Magnetorheological Clutch
,”
Proceedings of the Seventh International Conference on New Actuators
,
Bremen, Germany
, June 19–21.
13.
Lampe
,
D.
,
Thess
,
A.
, and
Dotzauer
,
C.
, 1998, “
MRF-Clutch: Design Considerations and Performance
,”
Proceedings of the Sixth International Conference on New Actuators
,
Bremen, Germany
, June 17–19.
14.
Carlson
,
J. D.
, 2001, “
Magnetorheological Brake With Integrated Flywheel
.”
15.
Doell
,
C.
, 2001, “
Drive-By-Wire Technology
,”
Proceedings of the Vehicle Technologies Symposium: Intelligent Systems for the Objective Fleet
, May 29–31, sponsored by NDIA.
16.
Bajcinca
,
N.
,
CortesZo
,
R.
,
Hauschild
,
M.
,
Bals
,
J.
, and
Hirzinger
,
G.
, 2003, “
Haptic Control for Steer-by-Wire Systems
,”
Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Las Vegas, NV
, Oct. 27–31.
17.
Ahmadkhanlou
,
F.
,
Washington
,
G.
,
Bechtel
,
S.
, and
Wang
,
Y.
, 2006, “
Magnetorheological Fluid Based Automotive Steer-By-Wire Systems
,”
Proceedings of the 13th SPIE International Symposium
,
San Diego, CA
, Feb. 26–Mar. 2.
18.
Ahmadkhanlou
,
F.
,
Wang
,
Y.
,
Bechtel
,
S. E.
, and
Washington
,
G. N.
, “
An Improved Model For Magnetorheological Fluid-Based Actuators and Sensors
,”
Int. J. Eng. Sci.
0020-7225, submitted.
19.
Ahmadkhanlou
,
F.
,
Washington
,
G.
, and
Bechtel
,
S.
, 2008, “
The Development of a Five DOF Magnetorheological Fluid-Based Telerobotic Haptic System
,”
Proceedings of the 15th SPIE International Symposium
,
San Diego, CA
, Mar. 9–13.
20.
Ahmadkhanlou
,
F.
,
Washington
,
G. N.
, and
Bechtel
,
S.
, 2008, “
Modeling and Control of Single and Two Degree of Freedom Magnetorheological Fluid-Based Haptic Systems for Telerobotic Surgery
,”
J. Intell. Mater. Syst. Struct.
, accepted. 1045-389X
21.
Ahmadkhanlou
,
F.
,
Washington
,
G. N.
,
Wang
,
Y.
, and
Bechtel
,
S. E.
, 2005, “
The Development of Variably Compliant Haptic Systems Using Magnetorheological Fluids
,”
Proceedings of the 12th SPIE International Symposium
,
San Diego, CA
, Mar. 6–10.
22.
Ahmadkhanlou
,
F.
,
Zite
,
J. L.
,
Neelakantan
,
V. A.
, and
Washington
,
G. N.
, 2006, “
A Magnetorheological Fluid Based Orthopaedic Active Knee Brace
,”
Proceedings of the 13th SPIE International Symposium
,
San Diego, CA
.
23.
Ahmadkhanlou
,
F.
,
Zite
,
J. L.
, and
Washington
,
G. N.
, 2007, “
A Magnetorheological Fluid Based Controllable Active Knee Brace
,”
Proceedings of the 14th SPIE International Symposium
,
San Diego, CA
, Dec. 10.
24.
Bingham
,
E. C.
, 1922,
Fluidity and Plasticity
,
McGraw-Hill
,
New York
.
25.
Genç
,
S.
, 2002, “
Synthesis and Properties of Magnetorheological (MR) Fluids
,” University of Pittsburgh.
26.
Genç
,
S.
, and
Phule
,
P.
, 2002, “
Rheological Properties of Magnetorheological Fluids
,”
Smart Mater. Struct.
0964-1726,
11
, pp.
140
146
.
27.
Herschel
,
W. H.
, and
Bulkley
,
R.
, 1926, “
Model for Time Dependent Behavior of Fluids
,”
Proceedings of the American Society of Testing Materials
,
Philadelphia
, Vol.
26
, p.
621
.
28.
Promislow
,
J. H. E.
, and
Gast
,
A. P.
, 1997, “
Low-Energy Suspension Structure of a Magnetorheological Fluid
,”
Phys. Rev. E
1063-651X,
56
, pp.
642
651
.
29.
Bechtel
,
S.
,
Washington
,
G.
,
Ahmadkhanlou
,
F.
, and
Wang
,
Y.
, 2004, “
Microstructural Analysis and Control of Magnetorheological Fluid
,”
ASME International Mechanical Engineering Congress and Exposition
,
Anaheim, CA
, Nov. 13–19, pp.
509
518
.
30.
Carlson
,
J. D.
, 2001, “
What Makes a Good MR Fluid?
,”
Proceedings of the Eighth International Conference on Electrorheological (ER) Fluids and Magneto-Rheological (MR) Suspensions
,
Nice, France
, July 9–13, pp.
63
69
.
31.
Neelakantan
,
V. A.
,
Washington
,
G. N.
, and
Wolfe
,
R.
, 2002, “
Force Feedback System Using Magneto Rheological Fluids for Telerobotic Surgery
,”
Proceedings of the SPIE International Conference on Smart Structures and Materials: Industrial and Commercial Applications of Smart Materials
,
San Diego, CA
, Nov. 14.
32.
Neelakantan
,
V. A.
, 2003, “
Modeling, Design, Testing, Control and Applications of Magnetorheological Fluid Devices
,” Ohio State University.
You do not currently have access to this content.