Computing high Reynolds number channel flows laden by heavy solid particles requires excessive CPU resources to calculate interparticle collisions. Since the frequency of these collisions is high, the kinematic details of each elementary collision may not be essential when calculating particle statistics. In this paper, the dynamics of a particle with a phase trajectory that is discontinuous (due to collisions) is simulated using a hypothetical “noncolliding” particle moving along a trajectory smoothed over interparticle collisions. The statistical temperature of this particle is assumed to be in equilibrium with the statistical “temperature” of the resolved turbulence. This simplified microdynamic is introduced into ballistic calculations of particles within the framework of the “two-way” LES approach. The simulation was conducted specifically to compare the velocity statistics of the hypothetical particle with statistics yielded by measurements in the gas∕particle channel flow and by the LES∕particle approach where binary collisions were simulated. This paper shows that, by assuming the universality of collisional microdynamics, one may predict the experimental observation and the results of detailed simulations without requiring supplementary CPU resources to compute the binary collisions.

1.
Kulick
,
J. D.
,
Fessler
,
J. R.
, and
Eaton
,
J. K.
, 1994, “
Particle Response and Turbulence Modification in Fully Developed Channel Flow
,”
J. Fluid Mech.
0022-1120,
277
, pp.
109
134
.
2.
Fessler
,
J. R.
,
Kulick
,
J. D.
, and
Eaton
,
J. K.
, 1994, “
Preferential Concentration of Heavy Particles in a Turbulent Channel Flow
,”
Phys. Fluids
1070-6631,
6
(
11
), pp.
3742
3749
.
3.
Benson
,
M. J.
, and
Eaton
,
J. K.
, 2003, “
The Effects of Wall Roughness on the Particle Velocity field in a Fully Developed Channel Flow
,” Report No. TSD-150, Mechanical Engineering Department,
Stanford University
, Stanford, CA.
4.
Kussin
,
J.
, and
Sommerfeld
,
M.
, 2002, “
Experimental Studies on Particle Behaviour and Turbulence Modification in Horizontal Channel Flow With Different Wall Roughness
,”
Exp. Fluids
0723-4864,
33
(
1
), pp.
143
159
.
5.
Sommerfeld
,
M.
, and
Kussin
,
J.
, 2003, “
Analysis of Collision Effects for Turbulent Gas-Particles Flow in a Horizontal Channel: Part II. Integral Properties and Validation
,”
Int. J. Multiphase Flow
0301-9322,
29
, pp.
701
718
.
6.
Moin
,
P.
, and
Kim
,
J.
, 1982, “
Numerical Investigation of Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
118
, pp.
341
377
.
7.
Saveliev
,
V. L.
, and
Gorokhovski
,
M. A.
, 2005, “
Group-Theoretical Model of Developed Turbulence and Renormalization of Navier-Stokes Equation
,”
Phys. Rev. E
1063-651X,
72
, p.
016302
.
8.
Simonin
,
O.
,
Deutsch
,
E.
, and
Boivin
,
M.
, 1995, “
Large Eddy Simulation and Second Moment Closure Model of Particle Fluctuating Motion in Two-Phase Turbulent Shear Flows
,”
Selected Papers from the Ninth Symposium on Turbulent Shear Flows
,
F.
Durst
,
N.
Kasagi
,
B. E.
Launder
,
F. W.
Schmidt
, and
J. H.
Whitelaw
, eds.,
Springer-Verlag
, Berlin.
9.
Boivin
,
M.
,
Simonin
,
O.
, and
Squires
,
K. D.
, 2000, “
On the Prediction of Gas-Solid Flows With Two-Way Coupling Using Large Eddy Simulation
,”
Phys. Fluids
1070-6631,
12
(
8
), pp.
2080
2090
.
10.
Apte
,
S. V.
,
Gorokhovski
,
M.
, and
Moin
,
P.
, 2003, “
LES of Atomizing Spray With Stochastic Modeling of Secondary Breakup
,”
Int. J. Multiphase Flow
0301-9322,
29
(
9
), pp.
1503
1522
.
11.
Wang
,
Q.
, and
Squires
,
K.
, 1996, “
Large Eddy Simulation of Particle-Laden Turbulent Channel Flow
,”
Phys. Fluids
1070-6631,
8
, pp.
1207
1223
.
12.
Simonin
,
O.
,
Wang
,
Q.
, and
Squires
,
K. D.
, 1997, “
Comparison Between Two-Fluid Model Predictions and Large Eddy Simulation Results in a Vertical Gas-Solid Turbulent Channel Flow
,” ASME FEDSM’97-3625.
13.
Vance
,
M. W.
, and
Squires
,
K. D.
, 2002, “
An Approach to Parallel Computing in an Eulerian-Lagrangian Two-Phase Flow Model
,” ASME FEDSM2002-31225.
14.
Yamamoto
,
Y.
,
Potthoff
,
M.
,
Tanaka
,
T.
,
Kajishima
,
T.
, and
Tsuji
,
T.
, 2001, “
Large-Eddy Simulation of Turbulent Gas-Particle Flow in a Vertical Channel: Effect of Considering Interparticle Collisions
,”
J. Fluid Mech.
0022-1120,
442
, pp.
303
334
.
15.
Alder
,
B. J.
, and
Wainwright
,
T. E.
, 1959, “
Studies in Molecular Dynamics. I. General Method
,”
J. Chem. Phys.
0021-9606,
31
(
2
), pp.
459
466
.
16.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Oxford University Press
,
London, UK
.
17.
Tanaka
,
T.
, and
Tsuji
,
Y.
, 1991, “
Numerical Simulation of Gas-Solid Two-Phase Flow in a Vertical Pipe: On the Effect of Inter-Particle Collision
,” ASME FED-Vol.
121
, pp.
123
128
.
18.
Sommerfeld
,
M.
, 1995, “
The Importance of Inter-Particle Collisions in Horizontal Gas-Solid Channel Flows
,” ASME FED-Vol.
228
, pp.
335
345
.
19.
Sommerfeld
,
M.
, 2003, “
Analysis of Collision Effects for Turbulent Gas-Particles Flow in a Horizontal Channel: Part I. Particle Transport
,”
Int. J. Multiphase Flow
0301-9322,
29
, pp.
675
699
.
20.
Sommerfeld
,
M.
, 2001, “
Validation of a Stochastic Lagrangian Modeling Approach for Inter-Particle Collisions in Homogeneous Turbulence
,”
Int. J. Multiphase Flow
0301-9322,
27
, pp.
1829
1858
.
21.
Dukowicz
,
J. K.
, 1980, “
A Particle-Fluid Numerical Model for Liquid Sprays
,”
J. Comput. Phys.
0021-9991,
35
(
2
), pp.
229
253
.
22.
Gorokhovski
,
M.
, and
Saveliev
,
V.
, 2003, “
Analyses of Kolmogorov’s Model of Breakup
,”
Phys. Fluids
1070-6631,
15
, pp.
184
192
.
23.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1981,
Course of Theoretical Physics
,
Butterworth-Heinemann
.
24.
Saveliev
,
V.
, and
Nanbu
,
K.
, 2002, “
Collision Group and Renormalization of the Boltzmann Collision Integral
,”
Phys. Rev. E
1063-651X,
65
, p.
051205
.
25.
Clift
,
R.
,
Grace
,
G. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops and Particles
,
Academic
,
New York
.
26.
Zaichik
,
L. I.
,
Simonin
,
O.
, and
Alipchenkov
,
V. M.
, 2003, “
Two Statistical Models for Predicting Collision Rates of Inertial Particles in Homogeneous Isotropic Turbulence
,”
Phys. Fluids
1070-6631,
15
(
10
), pp.
2995
3005
.
27.
Zaichik
,
L. I.
, and
Alipchenkov
,
V. M.
, 2003, “
Pair Dispersion and Preferential Concentration of Particles in Isotropic Turbulence
,”
Phys. Fluids
1070-6631,
15
(
6
), pp.
1779
1787
.
28.
Reeks
,
M. W.
, 1977, “
On the Dispersion of Small Particles Suspended in an Isotropic Turbulent Fluid
,”
J. Fluid Mech.
0022-1120,
83
(
3
), pp.
529
546
.
29.
Wang
,
L. P.
, and
Stock
,
D. E.
, 1993, “
Dispersion of Heavy Particles in Turbulent Motion
,”
J. Atmos. Sci.
0022-4928,
50
, pp.
1897
1913
.
30.
Pierce
,
C. D.
, 2001, “
Progress-Variable Approach for Large-Eddy Simulation of Turbulent Combustion
,” Ph.D. thesis, Stanford University, Stanford, CA.
31.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
(
7
), pp.
1760
1765
.
32.
Caraman
,
N.
,
Borée
,
J.
, and
Simonin
,
O.
, 2003, “
Effect of Collisions on the Dispersed Phase Fluctuation in a Dilute Tube Flow: Experimental and Theoretical Analysis
,”
Phys. Fluids
1070-6631,
15
(
12
), pp.
3602
3612
.
33.
Paris
,
A. D.
, and
Eaton
,
J. K.
, 2001, “
Turbulence Attenuation in a Particle-Laden Channel Flow
,” Report No. TSD-137, Mechanical Engineering Department,
Stanford University
, Stanford, CA.
34.
Elghobashi
,
S.
, and
Truesdell
,
G. C.
, 1993, “
On the Two-Way Interaction Between Homogeneous Turbulence and Dispersed Solid Particles. I: Turbulence Modification
,”
Phys. Fluids A
0899-8213,
5
(
7
), pp.
1790
1801
.
You do not currently have access to this content.