New fundamental measurements are presented for the transition process in flat plate boundary layers downstream of two-dimensional square ribs. By use of laser Doppler anemometry (LDA) and a large Matched-Index-of-Refraction (MIR) flow system, data for wall-normal fluctuations and Reynolds stresses were obtained in the near wall region to y+<0.1 in addition to the usual mean streamwise velocity component and its fluctuation. By varying velocity and rib height, the experiment investigated the following range of conditions: k+=5.5 to 21, 0.3<k/δ1<1,180<Rek<740,6×104<Rex,k<1.5×105,ReΘ660,125<xxk/k<580. Consequently, results covered boundary layers which retained their laminar characteristics through those where a turbulent boundary layer was established shortly after reattachment beyond the forcing rib. For “large” elements, evolution of turbulent statistics of the viscous layer for a turbulent boundary layer y+<30 was rapid even in flows where the mean velocity profile still showed laminar behavior.

1.
Purtell
,
L. P.
,
Klebanoff
,
P. S.
, and
Buckley
,
F. T.
,
1981
, “
Turbulent Boundary Layer at Low Reynolds Number
,”
Phys. Fluids
,
24
, pp.
802
811
.
2.
Murlis
,
J.
,
Tsai
,
H. M.
, and
Bradshaw
,
P.
,
1982
, “
The Structure of Turbulent Boundary Layers at Low Reynolds Numbers
,”
J. Fluid Mech.
,
122
, pp.
13
56
.
3.
Erm
,
L. P.
, and
Joubert
,
P. N.
,
1991
, “
Low-Reynolds-Number Turbulent Boundary Layers
,”
J. Fluid Mech.
,
230
, pp.
1
44
.
4.
Suder, K. L., O’Brien, J. E., and Reshotko, E., 1988, “Experimental Study of Bypass Transition in a Boundary Layer,” NASA TM 100913.
5.
Savill, A. M., 1993, “
Some Recent Progress in the Turbulence Modelling of By-Pass Transition,” Near-Wall Turbulent Flows, R.M.C. So, C. G. Speziale and B. E. Launder, eds., Elsevier, Amsterdam, pp. 829–848.
1.
Qui, S., and Simon, T. W., 1997, “An Experimental Investigation of Transition as Applied to Low Pressure Turbine Suction Surface Flows,” ASME paper 97-GT-455.
2.
Also Simon, T. W., Qui, S., and Yuan, K., 2000, “Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Airfoil Conditions,” NASA-CR-2000-209957.
1.
Lee
,
H.
, and
Kang
,
S.-H.
,
2000
, “
Flow Characteristics of Transitional Boundary Layers on an Airfoil in Wakes
,”
ASME J. Fluids Eng.
,
122
, pp.
522
532
.
2.
Fage, A., 1943, “The Smallest Size of Spanwise Surface Corrugation Which Affects Boundary Layer Transition on an Airfoil,” (British) Aero. Research Council, R&M 2120.
3.
Schlichting, H., 1979, Boundary Layer Theory, 7th ed., McGraw-Hill, New York.
4.
Masad
,
J. A.
,
1995
, “
On the Roughness Reynolds Number Transition Criterion
,”
ASME J. Fluids Eng.
,
117
, pp.
727
729
.
5.
Durst
,
F.
,
Fischer
,
M.
,
Becker
,
S.
,
Jovanovic
,
J.
, and
Schenck
,
T.
,
1999
, “Untersuchung des laminar-turbulenten Stro¨mungsumschlags hinter Rauigkeitselementen mit der Laser-Doppler-anemometrie,” Tech. Report Du 101/44-2, LSTM Erlangen, Juli.
6.
Klebanoff
,
P. S.
, and
Tidstrom
,
K. D.
,
1972
, “
Mechanism by Which a Two-Dimensional Roughness Element Induces Boundary-Layer Transition
,”
Phys. Fluids
15
, pp.
1173
1188
.
7.
Arnal
,
D.
,
Juillen
,
J. C.
, and
Olive
,
M.
,
1979
, “Etude expe’rimentale du de’clenchement de la transition par rugosite’s en e’coulement uniforme incompressible,” Tech. Report OA No. 4/5018 AYD, ONERA.
8.
Arnal, D., 1984, “Description and Prediction of Transition in Two-Dimensional Incompressible Flow,” AGARD-R-709, pp. 2–1 to 2–71.
9.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R. D.
,
1987
, “
Turbulence Statistics in Fully-Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.
10.
Horiuhi
,
K.
,
1992
, “Establishment of the DNS Database of Turbulent Transport Phenomena,” Report, Grants-in-aid for Scientific Research, No. 02302043.
11.
Laurien
,
E.
, and
Kleiser
,
L.
,
1989
, “
Numerical Simulation of Boundary-Layer Transition and Transition Control
,”
J. Fluid Mech.
,
199
, pp.
403
440
.
12.
Fasel
,
H.
,
Rist
,
U.
, and
Konzelmann
,
U.
,
1990
, “
Numerical Investigation of the Three-Dimensional Development in Boundary-Layer Transition
,”
AIAA J.
,
28
, pp.
29
37
.
13.
Spalart, P. R., 1993, “Numerical Study of Transition Induced by Suction Devices,” Near-Wall Turbulent Flows, R. M. C. So, C. G. Speziale, and B. E. Launder, eds., Elsevier, Amsterdam, pp. 849–858.
14.
Narasimha, R., 1998, Post Workshop Summary, Minnowbrook II, 1997 Workshop on Boundary Layer Transition in Turbomachines, J. E. laGraff and D. E. Ashpis, eds., NASA/CP-1998-206958, pp. 485–495.
15.
Patel
,
V. C.
,
1998
, “
Perspective: Flow at High Reynolds Number and Over Rough Surfaces—Achilles Heel of CFD
,”
ASME J. Fluids Eng.
,
120
, pp.
434
444
.
16.
Corino
,
E. R.
, and
Brodkey
,
R. S.
,
1969
, “
A Visual Investigation of the Wall Region in Turbulent Flow
,”
J. Fluid Mech.
,
37
, pp.
1
30
.
17.
Budwig
,
R.
,
1994
, “
Refractive Index Matching Methods for Liquid Flow Investigations
,”
Exp. Fluids
,
17
, pp.
330
335
.
18.
Condie
,
K. G.
,
Stoots
,
C. M.
,
Becker
,
S.
,
Alahyari
,
A. A.
,
Durst
,
F.
, and
McEligot
,
D. M.
,
1998
, “The Structure of Boundary Layer Transition Induced by a Square Rib (A New Large-Scale MIR Flow System for Measurements of Boundary Layer Transition,” Tech. Report INEEL/EXT-98-01039, Idaho National Engineering and Environmental Laboratory.
19.
Stoots, C. M., Becker, S., Condie, K. G., Durst, F., and McEligot, D. M., 2001, “A Large-Scale Matched-Index-of-Refraction Flow Facility for LDA Studies Around Complex Geometries,” Exp. Fluids, 30, pp. 391–398.
20.
Durst, F., Keck, T., and Kleine, R., 1979, “Turbulence Quantities and Reynolds Stress in Pipe Flow of Polymer Solutions Measured by Two-Channel Laser-Doppler Anemometry,” Proc., 6th Symp. On Turbulence, Rolla, Mo.
21.
Strunz, M., 1987, Ein Laminarwasserkanal zur Untersuchung von Stabilita¨tsproblemen in der Stro¨mungsgrenzschicht, Doctoral thesis, U. Stuttgart.
22.
Wiegand, T., 1996, “Experimentelle Untersuchungen zum laminar-turbulenten Transitionsprozeß eines Wellenzuges in einer Plattengrenzschict,” Doctoral thesis, U. Stuttgart.
23.
Hoesel
,
W.
, and
Rodi
,
W.
,
1977
, “
New Biasing Elimination Method for Laser Doppler Velocimeter Counter Processing
,”
Rev. Sci. Instrum.
,
48
, pp.
910
919
.
24.
Tummers, M. J., 1999, “Investigation of a Turbulent Wake in an Adverse Pressure Gradient Using Laser Doppler Anemometry,” Ph.D. thesis, Tech. Univ. Delft.
25.
MacManus, Eaton, D. J., Barrett, R., Rickards, J., and Swales, C., 1996, “Mapping the Flow Field Induced by a HLFC Perforation Using a High Resolution LDV,” AIAA paper 96-0097.
26.
Calabrese
,
R. V.
, and
Middleman
,
S.
,
1979
, “
The Dispersion of Discrete Particles in a Turbulent Flow Field
,”
AIChE J.
,
25
, No.
6
, pp.
1025
1035
.
27.
Schwartz
,
A. C.
,
Plesniak
,
M. W.
, and
Murthy
,
S. N. B.
,
1999
, “
Turbulent Boundary Layers Subjected to Multiple Strains
,”
ASME J. Fluids Eng.
,
121
, pp.
526
532
.
28.
Bendat, J. S., and Piersol, A. G., 1986, Random Data Analysis and Measurement Procedures, Wiley, New York.
29.
Orr, B., Thomson, E., and Budwig, R. S., 1997, “Drakeol 5 Thermophysical Property Measurements,” Mech. Engr. Dept. U. Idaho, Moscow, 18 Dec.
30.
Lienhart, H., and Becker, S., 1994, “LDA-Untersuchungen zur Grenzschichttransition,” 9 DGLR-Fach-Symposium, Stro¨mung mit Ablo¨sung, DGLR—Bericht 94-04, Bonn, pp. 25–31.
31.
Durst
,
F.
,
Jovanovic
,
J.
, and
Sender
,
J.
,
1995
, “
LDA Measurements in the Near Wall Region of a Turbulent Pipe Flow
,”
J. Fluid Mech.
,
295
, pp.
303
335
.
32.
Kays, W. M., 1966, Convective Heat and Mass Transfer, McGraw-Hill, New York.
You do not currently have access to this content.