Abstract

The flow field of a nonpremixed industrial gas burner is analyzed with Reynolds-averaged Navier–Stokes computational fluid dynamics validated against velocity and pressure measurements. Combustion is not modeled because the aim is optimizing the predictive capabilities of the cold flow before including chemistry. The system's complex flow physics, affected by a 90 deg turn, backward and forward facing steps, and transversal jets in the mainstream is investigated at full and partial load. The sensitivity of the computed flow field to inflow boundary condition setup, approach for resolving/modeling wall-bounded flows, and turbulence closure is assessed. In the first sensitivity analysis, the inflow boundary condition is prescribed using measured total pressure or measured velocity field. In the second, boundary layers are resolved down to the wall or modeled with wall functions. In the third sensitivity analysis, the turbulence closure uses the kω shear stress transport eddy viscosity model or two variants of the Reynolds stress model. The agreement between the predictions of most simulation setups among themselves and with the measurements is good. For a given type of inflow condition and wall flow treatment, the ω-based Reynolds stress model gives the best agreement with measurements among the considered turbulence models at full load. At partial load, the comparison with measured data highlights some scatter in the predictions of different patterns of the flow measurements. Overall, the findings of this study provide insight into the fluid dynamics of industrial gas burners and guidelines for their simulation-based analysis.

References

1.
Barlow
,
R.
, and
Frank
,
J.
,
1998
, “
Effects of Turbulence on Species Mass Fractions in Methane/Air Jet Flames
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
1087
1095
.10.1016/S0082-0784(98)80510-9
2.
Barlow
,
R.
,
Frank
,
J.
,
Karpetis
,
A.
, and
Chen
,
J.-Y.
,
2005
, “
Piloted Methane/Air Jet Flames: Transport Effects and Aspects of Scalar Structure
,”
Combust. Flame
,
143
(
4
), pp.
433
449
.10.1016/j.combustflame.2005.08.017
3.
Schneider
,
C.
,
Dreizler
,
A.
,
Janicka
,
J.
, and
Hassel
,
E.
,
2003
, “
Flow Field Measurements of Stable and Locally Extinguishing Hydrocarbon-Fuelled Jet Flames
,”
Combust. Flame
,
135
(
1
), pp.
185
190
.10.1016/S0010-2180(03)00150-0
4.
Lysenko
,
D.
,
Ertesvåg
,
I.
, and
Rian
,
K. E.
,
2014
, “
Numerical Simulations of the Sandia Flame d Using the Eddy Dissipation Concept
,”
Flow Turbul. Combust.
,
93
, p.
665
687.10.1007/s10494-014-9561-5
5.
Saini
,
R.
,
Prakash
,
S.
,
De
,
A.
, and
Yadav
,
R.
,
2018
, “
Investigation of NOx in Piloted Stabilized Methane-Air Diffusion Flames Using Finite-Rate and Infinitely-Fast Chemistry Based Combustion Models
,”
Therm. Sci. Eng. Prog.
,
5
, pp.
144
157
.10.1016/j.tsep.2017.11.008
6.
Pitsch
,
H.
, and
Steiner
,
H.
,
2000
, “
Scalar Mixing and Dissipation Rate in Large-Eddy Simulations of Non-Premixed Turbulent Combustion
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
41
49
.10.1016/S0082-0784(00)80193-9
7.
Pecquery
,
F.
,
Moureau
,
V.
,
Lartigue
,
G.
,
Vervisch
,
L.
, and
Roux
,
A.
,
2014
, “
Modelling Nitrogen Oxide Emissions in Turbulent Flames With Air Dilution: Application to Les of a Non-Premixed Jet-Flame
,”
Combust. Flame
,
161
(
2
), pp.
496
509
.10.1016/j.combustflame.2013.09.018
8.
He
,
D.
,
Yu
,
Y.
,
Kuang
,
Y.
, and
Wang
,
C.
,
2021
, “
Model Comparisons of Flow and Chemical Kinetic Mechanisms for Methane–Air Combustion for Engineering Applications
,”
Appl. Sci.
,
11
(
9
), p.
4107
.10.3390/app11094107
9.
Wronski
,
T.
,
Schönnenbeck
,
C.
,
Zouaoui-Mahzoul
,
N.
,
Brillard
,
A.
, and
Brilhac
,
J.-F.
,
2022
, “
Numerical Simulation Through Fluent of a Cold, Confined and Swirling Airflow in a Combustion Chamber
,”
Eur. J. Mech. B/Fluids
,
96
, pp.
173
187
.10.1016/j.euromechflu.2022.08.003
10.
Launder
,
B. E. B. E.
,
1972
,
Lectures in Mathematical Models of Turbulence/B. E. Launder and D. B. Spalding
,
Academic Press
,
London, UK
.
11.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
12.
Wilcox
,
D. C
et al
1998
,
Turbulence Modeling for CFD
, Vol.
2
,
DCW Industries La
,
Canada, CA
.
13.
Meraner
,
C.
,
Li
,
T.
,
Ditaranto
,
M.
, and
Løvås
,
T.
,
2018
, “
Cold Flow Characteristics of a Novel Bluff Body Hydrogen Burner
,”
Int. J. Hydrogen Energy
,
43
(
14
), pp.
7155
7168
.10.1016/j.ijhydene.2018.02.062
14.
Dutka
,
M.
,
Ditaranto
,
M.
, and
Løvås
,
T.
,
2016
, “
Nox Emissions and Turbulent Flow Field in a Partially Premixed Bluff Body Burner With CH4 and H2 Fuels
,”
Int. J. Hydrogen Energy
,
41
(
28
), pp.
12397
12410
.10.1016/j.ijhydene.2016.05.154
15.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New kε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
16.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Heat Mass Transfer
,
4
, p.
01
.
17.
Menter
,
F. R.
,
2015
, “
Best Practice: Scale-Resolving Simulations in Ansys CFD
,”
ANSYS Report, ANSYS Inc., Canonsburg, PA
.
18.
Menter
,
F.
,
2018
, “
Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid Rans-Les Modeling
,”
Progress in Hybrid RANS-LES Modelling
,
Y.
Hoarau
,
S.-H.
Peng
,
D.
Schwamborn
, and
A.
Revell
, eds.,
Springer International Publishing, Cham
, Switzerland, pp.
27
37
.
19.
Sensirion,
2018
, “
Sdp8xx-Analog Datasheet
,”
Sensirion
, Zürich, CH, accessed Oct. 3, 2022, https://sensirion.com/media/documents/68DF0025/6167E542/Sensirion_Differential_Pressure_Datasheet_SDP8xx_Analog.pdf
20.
Kimo Electronic Pvt. Ltd.
,
2022
, “
Kimo mp 200 p Thermo Anemometer Manometer Datasheet
,” Kimo Electronic Pvt. Ltd., Mumbai, India, accessed Oct. 3, 2022, https://www.netzerotools.com/assets/images/pdfs/kimo/mp200/NZ-kimo-MP200-manometer-datasheet.pdf
21.
TSI Incorporated
,
2014
, “
Ta440 Thermal Anemometer Datasheet
,” TSI Incorporated, Shoreview, MN,
accessed Oct. 3, 2022, 21 https://tsi.com/getmedia/fd36afb0-67d4-4cf5-a517-cc3743024329/TA410-TA430-440_Thermal_Anemometers_A4_UK_2980548-web?ext=.pdf
22.
Ansys-Inc,
2019
, “
Fluent Theory Guide, Release 2019.r3
,”
ANSYS Inc., Canonsburg, PA,
accessed May 11, 2022, https://www.ansys.com/Products/Fluids/ANSYS-Fluent.
23.
Morrall
,
A.
,
Quayle
,
S.
, and
Campobasso
,
M.
,
2020
, “
Turbulence Modelling for RANS CFD Analyses of Multi-Nozzle Annular Jet Pump Swirling Flows
,”
Int. J. Heat Fluid Flow
,
85
, p.
108652
.10.1016/j.ijheatfluidflow.2020.108652
24.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
(
3
), pp.
491
511
.10.1017/S0022112078001251
25.
Fu
,
S.
,
Launder
,
B.
, and
Leschziner
,
M.
,
1987
, “
Modelling Strongly Swirling Recirculating Jet Flow With Reynolds-Stress Transport Closures
,”
Sixth Symposium on Turbulent Shear Flows
, Toulouse, France, Sept. 7–9, pp. 17-6-1—17-6-6.
26.
Launder
,
B.
,
1989
, “
Second-Moment Closure and Its Use in Modelling Turbulent Industrial Flows
,”
Int. J. Numer. Methods Fluids
,
9
, pp.
963
985
.10.1002/fld.1650090806
27.
Launder
,
B.
,
1989
, “
Second-Moment Closure: Present… and Future?
,”
Int. J. Heat Fluid Flow
,
10
, pp.
282
300
.10.1016/0142-727X(89)90017-9
28.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure–Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
, pp.
245
272
.10.1017/S0022112091000101
29.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
31.
von Kármán
,
T.
,
1931
, “
Mechanical Similitude and Turbulence
,” NACA, Washington, DC.
32.
Snegirev
,
A.
, and
Frolov
,
A.
,
2011
, “
The Large Eddy Simulation of a Turbulent Diffusion Flame
,”
High Temp.
,
49
, pp.
690
703
.10.1134/S0018151X11040201
33.
Zhang
,
Y.
,
Xing
,
Y.
, and
Chen
,
S.
,
2018
, “
Cfd Investigation Based on Gas Burner With Low-Nox Strategy of Fuel-Staging
,”
IOP Conf. Ser. Earth Environ. Sci.
,
153
(
3
), p.
032022
.10.1088/1755-1315/153/3/032022
34.
Du
,
H.
,
Li
,
Z.
,
Liu
,
Z.
,
Zhang
,
M.
,
Chen
,
Z.
,
Song
,
J.
,
Fang
,
F.
, and
Xiao
,
R.
,
2022
, “
Influence of the Parallel c-Layer Secondary Air on Flow, Combustion and NOX Generation Characteristics of a 600MWe FW Down-Fired Boiler Retrofitted With a Stable Combustion Organization Mode
,”
Combust. Sci. Technol.
, pp.
1
25
.10.1080/00102202.2022.2120355
You do not currently have access to this content.