Abstract

Vaporous and gaseous cavitation cause several physical phenomena which are typically undesirable, such as reduction in compressibility and material damage. Therefore, the ability to capture these effects in simulation is highly valued. In the fluid power field, lumped parameter modeling technique has proven effective for analyzing components and systems, allowing for fast simulations. Past efforts in modeling cavitation using lumped parameter approach have assumed dependence of fluid properties such as bulk modulus, density, and viscosity directly to pressure and temperature. This cannot be considered as the fluid mixture is composed of different phases of matter. Some other formulations account for gaseous cavitation based on the equations that are derived from vaporous cavitation. This paper illustrates a better approach that combines the two cavitation effects by considering that both vapor and undissolved gas co-occupy a spherical bubble. The size of the spherical bubble is solved using the Rayleigh–Plesset equation, and the transfer of gas through the bubble interface is solved using Henry's law and diffusion of the dissolved gas in the liquid. These equations are coupled with a novel pressure derivative equation. To show the validity of the proposed approach, the instantaneous pressure of a closed fluid volume undergoing expansion/compression is compared with multiple experimental sources, showing an improvement in accuracy when compared to existing models. Integrating this modeling technique with current displacement chamber simulation can further improve the understanding of cavitation in hydraulic systems.

References

1.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
2.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
, Yokohama, Japan, May 30, Paper No. 152.https://www.researchgate.net/publication/306205415_A_two-phase_flow_model_for_predicting_cavitation_dynamics
3.
Tsuda
,
S.
,
Tani
,
N.
, and
Yamanishi
,
N.
,
2012
, “
Development and Validation of a Reduced Critical Radius Model for Cryogenic Cavitation
,”
ASME J. Fluids Eng.
,
134
(
5
), p.
051301
.10.1115/1.4006469
4.
Karakas
,
E. S.
,
Tokgöz
,
N.
,
Watanabe
,
H.
,
Aureli
,
M.
, and
Evrensel
,
C. A.
,
2021
, “
Comparison of Transport Equation-Based Cavitation Models and Application to Industrial Pumps With Inducers
,”
ASME J. Fluids Eng.
,
144
(
1
), p.
011201
.10.1115/1.4051471
5.
Hundshagen
,
M.
,
Rave
,
K.
,
Nguyen
,
B.-D.
,
Popp
,
S.
,
Hasse
,
C.
,
Mansour
,
M.
,
Thévenin
,
D.
, and
Skoda
,
R.
,
2022
, “
Two-Phase Flow Simulations of Liquid/Gas Transport in Radial Centrifugal Pumps With Special Emphasis on the Transition From Bubbles to Adherent Gas Accumulations
,”
ASME J. Fluids Eng.
,
144
(
10
), p.
101202
.10.1115/1.4054264
6.
Kinzel
,
M. P.
,
Lindau
,
J. W.
, and
Kunz
,
R. F.
,
2019
, “
An Assessment of Computational Fluid Dynamics Cavitation Models Using Bubble Growth Theory and Bubble Transport Modeling
,”
ASME J. Fluids Eng.
,
141
(
4
), p.
041301
.10.1115/1.4042421
7.
Ransegnola
,
T.
,
Zappaterra
,
F.
, and
Vacca
,
A.
,
2022
, “
A Strongly Coupled Simulation Model for External Gear Machines Considering Fluid-Structure Induced Cavitation and Mixed Lubrication
,”
Appl. Math. Modell.
,
104
, pp.
721
749
.10.1016/j.apm.2021.11.035
8.
Mistry
,
Z.
,
Manne
,
V.
,
Vacca
,
A.
,
Dautry
,
E.
, and
Petzold
,
M.
,
2020
,
A Numerical Model for the Evaluation of Gerotor Torque Considering Multiple Contact Points and Fluid-Structure Interactions
,
Technische Universität Dresden
, Dresden, Germany.
9.
Gholizadeh
,
H.
,
Burton
,
R.
, and
Schoenau
,
G.
,
2011
, “
Fluid Bulk Modulus: A Literature Survey
,”
Int. J. Fluid Power
,
12
(
3
), pp.
5
15
.10.1080/14399776.2011.10781033
10.
Casoli
,
P.
,
Vacca
,
A.
,
Franzoni
,
G.
, and
Berta
,
G.
,
2006
, “
Modelling of Fluid Properties in Hydraulic Positive Displacement Machines
,”
Simul. Modell. Pract. Theory
,
14
(
11
), pp.
1059
1072
.10.1016/j.simpat.2006.09.006
11.
Vacca
,
A.
,
Klop
,
R.
, and
Ivantysynova
,
M.
,
2010
, “
A Numerical Approach for the Evaluation of the Effects of Air Release and Vapour Cavitation on Effective Flow Rate of Axial Piston Machines
,”
Int. J. Fluid Power
,
11
(
1
), pp.
33
45
.10.1080/14399776.2010.10780996
12.
Bertola
,
N.
,
Wang
,
H.
, and
Chanson
,
H.
,
2018
, “
Air Bubble Entrainment, Breakup, and Interplay in Vertical Plunging Jets
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091301
.10.1115/1.4039715
13.
Li
,
R.
,
Xu
,
W.-L.
,
Luo
,
J.
,
Yuan
,
H.
, and
Zhao
,
W.-Y.
,
2019
, “
A Study on Aeration to Alleviate Cavitation Erosion in the Contraction Section of Pressure Flow
,”
ASME J. Fluids Eng.
,
141
(
9
), p.
091108
.10.1115/1.4043230
14.
Kowalski
,
K.
,
Pollak
,
S.
,
Skoda
,
R.
, and
Hussong
,
J.
,
2018
, “
Experimental Study on Cavitation-Induced Air Release in Orifice Flows
,”
ASME J. Fluids Eng.
,
140
(
6
), p.
061201
.10.1115/1.4038730
15.
Freudigmann
,
H.-A.
,
Dörr
,
A.
,
Iben
,
U.
, and
Pelz
,
P. F.
,
2017
, “
Modeling of Cavitation-Induced Air Release Phenomena in Micro-Orifice Flows
,”
ASME J. Fluids Eng.
,
139
(
11
), p.
111301
.10.1115/1.4037048
16.
Holl
,
J. W.
,
1960
, “
An Effect of Air Content on the Occurrence of Cavitation
,”
ASME J. Basic Eng.
,
82
(
4
), pp.
941
945
.10.1115/1.3662809
17.
Zhou
,
J.
,
Vacca
,
A.
, and
Manhartsgruber
,
B.
,
2013
, “
A Novel Approach for the Prediction of Dynamic Features of Air Release and Absorption in Hydraulic Oils
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091305
.10.1115/1.4024864
18.
Schrank
,
K.
,
Murrenhoff
,
H.
, and
Stammen
,
C.
,
2013
, “
Measurements of Air Absorption and Air Release Characteristics in Hydraulic Oils at Low Pressure
,”
ASME
Paper No. FPMC2013-4450.10.1115/FPMC2013-4450
19.
Schmitz
,
K.
, and
Murrenhoff
,
H.
,
2015
, “
Modelling of the Influence of Entrained and Dissolved Air on the Performance of an Oil-Hydraulic Capacity
,”
Int. J. Fluid Power
,
16
(
3
), pp.
175
183
.10.1080/14399776.2015.1110094
20.
Zhou
,
J.
,
Hu
,
J.
, and
Yuan
,
S.
,
2016
, “
Modeling Bubble Evolution in Air-Oil Mixture With a Simplified Method
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
16
), pp.
2865
2871
.10.1177/0954406215602033
21.
Epstein
,
P. S.
, and
Plesset
,
M. S.
,
1950
, “
On the Stability of Gas Bubbles in Liquid–Gas Solutions
,”
J. Chem. Phys.
,
18
(
11
), pp.
1505
1509
.10.1063/1.1747520
22.
Tian
,
H.
, and
Van de Ven
,
J. D.
,
2017
, “
Modeling and Experimental Studies on the Absorption of Entrained Gas and the Influence on Fluid Compressibility
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101301
.10.1115/1.4036711
23.
Brennen
,
C. E.
,
2014
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
, Cambridge, UK.
24.
Rayleigh
,
L.
,
1917
, “
VIII. On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
34
(
200
), pp.
94
98
.10.1080/14786440808635681
25.
Plesset
,
M. S.
,
1949
, “
The Dynamics of Cavitation Bubbles
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
277
282
.10.1115/1.4009975
26.
Vacca
,
A.
, and
Franzoni
,
G.
,
2021
,
Hydraulic Fluid Power
,
Wiley
, Hoboken, NJ.
27.
Hindmarsh
,
A.
, and
Petzold
,
L.
,
2005
, “
Lsoda, Ordinary Differential Equation Solver for Stiff or Non-Stiff System
,” accessed Mar. 17, 2023, https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.LSODA.html
28.
Kratschun
,
F.
,
Schmitz
,
K.
, and
Murrenhoff
,
H.
,
2016
, “
Experimental Investigation of the Bunsen and the Diffusion Coefficients in Hydraulic Fluids
,”
10th International Fluid Power Conference, Internationales Fluidtechnisches Kolloquium
,
Dresden
, Germany, Mar. 8, pp.
181
192
.
29.
Group, U. S.
,
2021
, “
Cavitation and Consequent Damage to Hydraulic Pumps
,” accessed July 15, 2022, https://www.universalservo.com/cavitation-and-consequent-damage-to-hydraulic-pumps
30.
Sahasrabudhe
,
S. N.
,
Rodriguez-Martinez
,
V.
,
O'Meara
,
M.
, and
Farkas
,
B. E.
,
2017
, “
Density, Viscosity, and Surface Tension of Five Vegetable Oils at Elevated Temperatures: Measurement and Modeling
,”
Int. J. Food Prop.
,
20
(
Sup2
), pp.
1965
1981
.10.1080/10942912.2017.1360905
31.
Haas
,
R.
, and
Manhartsgruber
,
B.
,
2010
, “
Compressibility Measurements of Hydraulic Fluids in the Low Pressure Range
,”
Proceedings of the 6th FPNI Ph.D. Symposium
, West Laffayette, IN, June 15, 2010, Vol.
2
, pp.
681
690
.https://www.researchgate.net/publication/264904273_Compressibility_Measurements_of_Hydraulic_Fluids_in_the_Low_Pressure_Range
32.
Groß
,
T. F.
, and
Pelz
,
P. F.
,
2017
, “
Diffusion-Driven Nucleation From Surface Nuclei in Hydrodynamic Cavitation
,”
J. Fluid Mech.
,
830
, pp.
138
164
.10.1017/jfm.2017.587
33.
Kim
,
S.
, and
Murrenhoff
,
H.
,
2012
, “
Measurement of Effective Bulk Modulus for Hydraulic Oil at Low Pressure
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021201
.10.1115/1.4005672
You do not currently have access to this content.