Abstract

This work involves studying the effects of plate motion on the turbulent flow behavior of a wall jet stream flowing over a flat plate moving at a constant velocity in a quiescent atmosphere. A modified low-Reynolds-number turbulence model developed by Yang and Shih (YS model) is used to perform the numerical investigation. The YS model involves applying integration to a wall technique to capture the flow and heat transfer phenomenon in the near-wall region. The Reynolds number is taken as 15,000 and Prandtl number of the fluid as 7. The plate motion effect on the flow behavior is observed for the various velocity ratios Up=02. The velocity vector diagrams and the local velocity profiles at various axial locations are plotted to analyze the flow pattern variation with the plate velocity. Based on the investigation of velocity profiles, nearly self-similar velocity profiles are noticed for Up=0,0.5, and 2 whereas for Up=1.0 and 1.5, the velocity profiles display similarity near the wall but diverge away from the wall. The turbulent kinetic energy (TKE) (k) and its dissipation rate (ε) within the viscous shear regime are predicted for moving plate conditions. The dissipation rate appears to be higher for higher velocity ratios. Overall, the plate motion significantly influences the flow field.

References

1.
Launder
,
B. E.
, and
Rodi
,
W.
,
1983
, “
The Turbulent Wall Jet—Measurements and Modeling
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
429
459
.10.1146/annurev.fl.15.010183.002241
2.
Al Ali
,
A. R.
, and
Janajreh
,
I.
,
2015
, “
Numerical Simulation of Turbine Blade Cooling Via Jet Impingement
,”
Energy Procedia
,
75
, pp.
3220
3229
.10.1016/j.egypro.2015.07.683
3.
Gogineni
,
S.
, and
Shih
,
C.
,
1997
, “
Experimental Investigation of the Unsteady Structure of a Transitional Plane Wall Jet
,”
Exp. Fluids
,
23
(
2
), pp.
121
129
.10.1007/s003480050093
4.
Banyassady
,
R.
, and
Piomelli
,
U.
,
2014
, “
Turbulent Plane Wall Jets Over Smooth and Rough Surfaces
,”
J. Turbul.
,
15
(
3
), pp.
186
207
.10.1080/14685248.2014.888492
5.
Sengupta
,
J.
,
Thomas
,
B. G.
, and
Wells
,
M. A.
,
2005
, “
The Use of Water Cooling During the Continuous Casting of Steel and Aluminum Alloys
,”
Metall. Mater. Trans. A
,
36
(
1
), pp.
187
204
.10.1007/s11661-005-0151-y
6.
Nizou
,
P. Y.
,
1981
, “
Heat and Momentum Transfer in a Plane Turbulent Wall Jet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
103
(
1
), pp.
138
140
.10.1115/1.3244407
7.
Launder
,
B. E.
, and
Rodi
,
W.
,
1979
, “
The Turbulent Wall Jet
,”
Prog. Aerosp. Sci.
,
19
, pp.
81
128
.10.1016/0376-0421(79)90002-2
8.
Wang
,
X. K.
, and
Tan
,
S. K.
,
2007
, “
Experimental Investigation of the Interaction Between a Plane Wall Jet and a Parallel Offset Jet
,”
Exp. Fluids
,
42
(
4
), pp.
551
562
.10.1007/s00348-007-0263-9
9.
AbdulNour
,
R. S.
,
Willenborg
,
K.
,
McGrath
,
J. J.
,
Foss
,
J. F.
, and
AbdulNour
,
B. S.
,
2000
, “
Measurements of the Convection Heat Transfer Coefficient for a Planar Wall Jet: Uniform Temperature and Uniform Heat Flux Boundary Conditions
,”
Exp. Therm. Fluid Sci.
,
22
(
3–4
), pp.
123
131
.10.1016/S0894-1777(00)00018-2
10.
Rostamy
,
N.
,
Bergstrom
,
D. J.
,
Sumner
,
D.
, and
Bugg
,
J. D.
,
2011
, “
The Effect of Surface Roughness on the Turbulence Structure of a Plane Wall Jet
,”
Phys. Fluids
,
23
, pp.
31
36
.10.1063/1.3614478
11.
Tang
,
Z.
,
Rostamy
,
N.
,
Bergstrom
,
D. J.
,
Bugg
,
J. D.
, and
Sumner
,
D.
,
2015
, “
Incomplete Similarity of a Plane Turbulent Wall Jet on Smooth and Transitionally Rough Surfaces
,”
J. Turbul.
,
16
(
11
), pp.
1076
1090
.10.1080/14685248.2015.1054034
12.
Chaab
,
M. A.
,
2010
, “
Experimental Study of Three-Dimensional Offset Jets and Wall Jets
,” Ph.D. thesis,
University of Manitoba
,
Winnipeg, MB, Canada
.
13.
Craft
,
T. J.
, and
Launder
,
B. E.
,
2001
, “
On the Spreading Mechanism of the Three-Dimensional Turbulent Wall Jet
,”
J. Fluid Mech.
,
435
(
5
), pp.
305
326
.10.1017/S0022112001003846
14.
Lien
,
F. S.
, and
Leschziner
,
M. A.
,
1993
, “
Second-Moment Modeling of Recirculating Flow With a Non-Orthogonal Collocated Finite Volume Algorithm
,”
Turbulent Shear Flows 8
,
Springer
,
Berlin, Germany
, pp.
205
222
.
15.
Pramanik
,
S.
, and
Das
,
M. K.
,
2013
, “
Numerical Characterization of a Planar Turbulent Offset Jet Over an Oblique Wall
,”
Comput. Fluids
,
77
, pp.
36
55
.10.1016/j.compfluid.2013.02.007
16.
Kim
,
D. S.
,
Yoon
,
S. H.
,
Lee
,
D. H.
, and
Kim
,
K. C.
,
1996
, “
Flow and Heat Transfer Measurements of a Wall Attaching Offset Jet
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
2907
2913
.10.1016/0017-9310(95)00383-5
17.
Li
,
Z.
,
Huai
,
W.
, and
Yang
,
Z.
,
2012
, “
Interaction Between Wall Jet and Offset Jet With Different Velocity and Offset Ratio
,”
Procedia Eng.
,
28
, pp.
49
54
.10.1016/j.proeng.2012.01.681
18.
Kumar
,
A.
,
2015
, “
Mean Flow and Thermal Characteristics of a Turbulent Dual Jet Consisting of a Plane Wall Jet and a Parallel Offset Jet
,”
Numer. Heat Transfer, Part A
,
67
(
10
), pp.
1075
1096
.10.1080/10407782.2014.955348
19.
Hnaien
,
N.
,
Marzouk
,
S.
,
Kolsi
,
L.
,
Rashed
,
A.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2017
, “
CFD Investigation on the Steady Interaction Between an Offset Jet and an Oblique Wall Jet
,”
J. Appl. Fluid Mech.
,
11
(
4
), pp.
885
894
.10.29252/JAFM.11.04.28214
20.
Kechiche
,
J.
,
Mhiri
,
H.
,
Palec
,
G. L.
, and
Bournot
,
P.
,
2004
, “
Application of Low Reynolds Number kε Turbulence Models to the Study of Turbulent Wall Jets
,”
Int. J. Therm. Sci.
,
43
(
2
), pp.
201
211
.10.1016/j.ijthermalsci.2003.06.005
21.
Herrero
,
J.
,
Grau
,
F. X.
,
Grifoll
,
J.
, and
Giralt
,
F.
,
1991
, “
A Near Wall kε Formulation for High Prandtl Number Heat Transfer
,”
Int. J. Heat Mass Transfer
,
34
(
3
), pp.
711
721
.10.1016/0017-9310(91)90119-Y
22.
Nagano
,
Y.
, and
Hishida
,
M.
,
1987
, “
Improved Form of the kε Model for Wall Turbulent Shear Flows
,”
ASME J. Fluids Eng.
,
109
(
2
), pp.
156
160
.10.1115/1.3242636
23.
Chien
,
K. Y.
,
1982
, “
Predictions of Channel and Boundary Layer Flows With a Low-Reynolds Number Turbulent Model
,”
AIAA J.
,
20
(
1
), pp.
33
38
.10.2514/3.51043
24.
Kechiche
,
J.
,
Mhiri
,
H.
,
Palec
,
G. L.
, and
Bournot
,
P.
,
2004
, “
Numerical Study of the Inlet Conditions on a Turbulent Plane Two Dimensional Wall Jet
,”
Energy Convers. Manage.
,
45
(
18–19
), pp.
2931
2949
.10.1016/j.enconman.2003.12.021
25.
Ljuboja
,
M.
, and
Rodi
,
W.
,
1980
, “
Calculation of Turbulent Wall Jets With an Algebraic Reynolds Stress Model
,”
ASME J. Fluids Eng.
,
102
(
3
), pp.
350
356
.10.1115/1.3240693
26.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2013
, “
Comparison of Two Low-Reynolds Number Turbulence Models for Fluid Flow Study of Wall Bounded Jets
,”
Int. J. Heat Mass Transfer
,
61
, pp.
365
380
.10.1016/j.ijheatmasstransfer.2013.01.062
27.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.10.1016/0094-4548(74)90150-7
28.
Yang
,
Z.
, and
Shih
,
T. H.
,
1993
, “
New Time Scale Based kε Model for Near Wall Turbulence
,”
AIAA J.
,
31
(
7
), pp.
1191
1198
.10.2514/3.11752
29.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2015
, “
A Comparative Study of Heat Transfer Characteristics of Wall-Bounded Jets Using Different Turbulence Models
,”
Int. J. Therm. Sci.
,
89
, pp.
337
356
.10.1016/j.ijthermalsci.2014.11.019
30.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2016
, “
Numerical Investigation on the Performance of Low-Reynolds Number k ε Model for a Buoyancy-Opposed Wall Jet Flow
,”
Int. J. Heat Mass Transfer
,
95
, pp.
636
649
.10.1016/j.ijheatmasstransfer.2015.10.067
31.
Karwe
,
M.
, and
Jaluria
,
Y.
,
1991
, “
Numerical Simulation of Thermal Transport Associated With a Continuously Moving Flat Sheet in Materials Processing
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
113
(
3
), pp.
612
619
.10.1115/1.2910609
32.
Jaluria
,
Y.
, and
Singh
,
A. P.
,
1983
, “
Temperature Distribution in a Moving Material Subjected to Surface Energy Transfer
,”
Comput. Methods Appl. Mech. Eng.
,
41
(
2
), pp.
145
157
.10.1016/0045-7825(83)90003-8
33.
Nasif
,
G.
,
Balachandar
,
R.
, and
Barron
,
R. M.
,
2015
, “
Simulation of Jet Impingement Heat Transfer Onto a Moving Disc
,”
Int. J. Heat Mass Transfer
,
80
, pp.
539
550
.10.1016/j.ijheatmasstransfer.2014.09.036
34.
Achari
,
A. M.
, and
Das
,
M. K.
,
2017
, “
Conjugate Heat Transfer Study of a Turbulent Slot Jet Impinging on a Moving Plate
,”
Heat Mass Transfer
,
53
(
3
), pp.
1017
1035
.10.1007/s00231-016-1873-7
35.
Biswas
,
G.
, and
Eswaran
,
V.
,
2002
,
Turbulent Flows: Fundamentals, Experiments and Modeling
,
Alpha Science International Ltd
.,
Pangbourne, UK
.
36.
Doormaal
,
J. P. V.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.10.1080/01495728408961817
37.
Versteeg
,
H. K.
, and
Malalasekera
,
V.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education Ltd
.,
Harlow, UK
.
38.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
New York
.
39.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “
Turbulence Modeling Validation, Testing and Development
,”
NASA Technical Memorandum, Ames Research Center
,
Moffett Field, CA
, pp.
110
446
, Technical Report No. NASA TM-110446.
40.
Nizou
,
P. Y.
, and
Tida
,
T.
,
1995
, “
Transferts de Chaleur et de Quantité de Mouvement Dans Les Jets Pariétaux Plans Turbulents
,”
Int. J. Heat Mass Transfer
,
38
(
7
), pp.
1187
1200
.10.1016/0017-9310(94)00235-N
41.
Wygnanski
,
I.
,
Katz
,
Y.
, and
Horev
,
E.
,
1992
, “
On the Applicability of Various Scaling Laws to the Turbulent Wall Jet
,”
J. Fluid Mech.
,
234
, pp.
669
690
.10.1017/S002211209200096X
You do not currently have access to this content.