Abstract

The present numerical investigation aims to understand the effect of the chordwise sweep on the performance of a tandem rotor. In a tandem compressor rotor, diffusion is achieved through two smaller airfoils, which are positioned in a particular fashion to nullify the effect of the boundary layer separation. The forward and aft rotor blades have different blade setting angles from the hub to the tip. Executing a chordwise sweep turns out to be an invalid tandem configuration due to the intersection of the forward and the aft rotor. To overcome this, a certain amount of lean is provided to the aft rotor. Therefore, the configurations selected for the current investigation are blades with a combination of sweep and lean. Two different forward sweep configurations and one backward sweep configuration are investigated. A significant improvement in the stall margin is observed for the forward-swept rotor configuration. However, the stage loading and efficiency of the unswept rotor are found to be higher than the forward-swept rotor case. Forward sweep reduces the tip loading of the forward rotor, which delays the tip stall. Backward sweep appears to be more detrimental in terms of the operating range of the tandem rotor, causing a substantial drop in the stall margin. The performance of the swept and the unswept rotor is compared at the design mass flow and near the stall mass flow rate. The pay-off derived from the chordwise sweep is elucidated with the help of blade loading, tip leakage vortices, blockage, skin friction lines, and various vortex interactions.

References

1.
Saha
,
U. K.
, and
Roy
,
B.
,
1997
, “
Experimental Investigations on Tandem Compressor Cascade Performance at Low Speeds
,”
Exp. Therm. Fluid Sci.
,
14
(
3
), pp.
263
276
.10.1016/S0894-1777(96)00125-2
2.
Roy
,
B.
,
Walvekar
,
A. K.
,
Saha
,
U. K.
, and
Marathe
,
B. V.
,
1995
, “
Low Speed Cascade Studies of Highly Cambered Single and Tandem Compressor Blading
,”
Int. J. Turbo Jet Engines
,
12
, pp.
129
137
.10.1515/TJJ.1995.12.2.129
3.
Böhle
,
M.
, and
Frey
,
T.
,
2014
, “
Numerical and Experimental Investigations of the Three-Dimensional-Flow Structure of Tandem Cascades in the Sidewall Region
,”
ASME. J. Fluids Eng.
,
136
(
7
), p.
071102
.10.1115/1.4026880
4.
Heinrich
,
A.
,
Tiedemann
,
C.
, and
Peitsch
,
D.
,
2017
, “
Experimental Investigations of the Aerodynamics of Highly Loaded Tandem Vanes in a High-Speed Stator Cascade
,”
ASME
Paper No. GT2017-63235
.10.1115/GT2017-63235
5.
Schneider
,
T.
, and
Kožulović
,
D.
,
2013
, “
Flow Characteristics of Axial Compressor Tandem Cascades at Large Off-Design Incidence Angles
,”
ASME
Paper No. GT2013-94708.10.1115/GT2013-94708
6.
Hasegawa
,
H.
,
Matsuoka
,
A.
, and
Suga
,
S.
,
2003
, “
Development of a Highley Loaded Fan With Tandem Cascade
,”
AIAA Paper No. 2003-1065.
7.
Mohsen
,
M.
,
Owis
,
F. M.
, and
Hashim
,
A. A.
,
2017
, “
The Impact of Tandem Rotor Blades on the Performance of Transonic Axial Compressors
,”
Aerosp. Sci. Technol.
,
67
, pp.
237
248
.10.1016/j.ast.2017.04.019
8.
Kumar
,
A.
, and
Pradeep
,
A. M.
,
2018
, “
Performance Evaluation of a Tandem Rotor Under Design and Off-Design Operation
,”
ASME
Paper No. GT2018-75478.10.1115/GT2018-75478
9.
Kumar
,
A.
, and
Pradeep
,
A. M.
,
2021
, “
Design Methodology of a Highly Loaded Tandem Rotor and Its Performance Analysis Under Clean and Distorted Inflows
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
235
(
23
), pp.
6798
6821
.10.1177/09544062211016021
10.
McGlumphy
,
J.
,
Ng
,
W. F.
,
Wellborn
,
S. R.
, and
Kempf
,
S.
,
2009
, “
Numerical Investigation of Tandem Airfoils for Subsonic Axial-Flow Compressor Blades
,”
ASME. J. Turbomach.
,
131
(
2
), p.
021018
.10.1115/1.2952366
11.
Falla
,
G. A. C.
,
2004
, “
Numerical Investigation of the Flow in Tandem Compressor Cascades
,” Master's thesis,
Institute of Thermal Power Plants, Vienna University of Technology
, Austria.
12.
Singh
,
A.
, and
Mistry
,
C. S.
,
2019
, “
Study on Effect of Axial Overlap on Tip Leakage Flow Structure in Tandem Bladed Low Speed Axial Flow Compressor
,”
ASME
Paper No. GT2019-91366.10.1115/GT2019-91366
13.
Kumar
,
A.
,
Chhugani
,
H.
,
More
,
S.
, and
Pradeep
,
A. M.
,
2022
, “
Effect of Differential Tip Clearance on the Performance of a Tandem Rotor
,”
ASME. J. Turbomach.
,
144
(
8
), p.
081007
.10.1115/1.4053597
14.
Konrath
,
L.
,
Peitsch
,
D.
, and
Heinrich
,
A.
,
2020
, “
An Analysis of the Secondary Flow Around a Tandem Blade Under the Presence of a Tip Gap in a High-Speed Linear Compressor Cascade
,”
ASME
Paper No. GT2020-14175
.10.1115/GT2020-14175
15.
Foret
,
J.
,
Franke
,
D.
,
Klausmann
,
F.
,
Schneider
,
A.
,
Schiffer
,
H.-P.
,
Becker
,
B.
, and
Müller
,
H.
,
2021
, “
Experimental Aerodynamic and Aeroelastic Investigation of a Highly-Loaded 1.5-Stage Transonic Compressor With Tandem Stator
,”
Int. J. Turbomach. Propuls. Power
,
6
(
3
), p.
21
.10.3390/ijtpp6030021
16.
Wilkosz
,
B.
,
Schmidt
,
J.
,
Guenther
,
C.
,
Schwarz
,
P.
,
Jeschke
,
P.
, and
Smythe
,
C.
,
2014
, “
Numerical and Experimental Comparison of a Tandem and Single Vane Deswirler Used in an Aero Engine Centrifugal Compressor
,”
ASME J. Turbomach.
,
136
(
4
), p.
041005
.10.1115/1.4024891
17.
Mao
,
X.
,
Liu
,
B.
, and
Zhang
,
B.
,
2019
, “
Hub Clearance Effects of a Cantilevered Tandem Stator on the Performance and Flow Behaviors in a Small-Scale Axial Flow Compressor
,”
Aerosp. Sci. Technol.
,
91
, pp.
219
230
.10.1016/j.ast.2019.05.011
18.
Li
,
Z.
,
Han
,
G.
,
Lu
,
X.
,
Huang
,
E.
, and
Zhao
,
S.
,
2020
, “
Improving the Operating Range Using a Centrifugal Compressor With a Tandem Impeller
,”
Aerosp. Sci. Technol.
,
96
, p.
105548
.10.1016/j.ast.2019.105548
19.
Li
,
Z.
,
Lu
,
X.
,
Han
,
G.
,
Huang
,
E.
,
Yang
,
C.
, and
Zhu
,
J.
,
2020
, “
Numerical and Experimental Investigation of Flow Mechanism and Application of Tandem-Impeller for Centrifugal Compressor
,”
Aerosp. Sci. Technol.
,
100
, p.
105819
.10.1016/j.ast.2020.105819
20.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M. M.
,
2002
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading-Part-I: University Research and Methods Development
,”
ASME J. Turbomach.
,
124
(
4
), pp.
521
532
.10.1115/1.1507333
21.
Mohammed
,
K. P.
, and
Raj
,
D. P.
,
1977
, “
Investigations on Axial Flow Fan Impellers With Forward Swept Blades
,”
ASME J. Fluids Eng.
,
99
(
3
), pp.
543
547
.10.1115/1.3448839
22.
Hah
,
C.
, and
Wennerstrom
,
A. J.
,
1991
, “
Three-Dimensional Flow Fields Inside a Transonic Compressor With Swept Blades
,”
ASME J. Turbomach.
,
113
(
2
), pp.
241
250
.10.1115/1.2929092
23.
Neubert
,
R. J.
,
Hobbs
,
D. E.
, and
Weingold
,
H. D.
,
1995
, “
Application of Sweep to Improve the Efficiency of a Transonic Fan Part I: Design
,”
AIAA J. Propul. Power
,
11
(
1
), pp.
49
54
.10.2514/3.23839
24.
Boyer
,
K. M.
,
King
,
P. I.
, and
Copenhaver
,
W. W.
,
1995
, “
Stall Inception in Single-Stage Transonic Compressors With Straight and Swept Leading Edges
,”
AIAA J. Propul. Power
,
11
(
6
), pp.
1363
1366
.10.2514/3.23980
25.
Wadia
,
A. R.
,
Szucs
,
P. N.
, and
Crall
,
D. W.
,
1998
, “
Inner Workings of Aerodynamic Sweep
,”
ASME J. Turbomach.
,
120
(
4
), pp.
671
682
.10.1115/1.2841776
26.
Beiler
,
M. G.
, and
Carolus
,
T. H.
,
1999
, “
Computation and Measurement of Flow in Axial Flow Fans With Skewed Blades
,”
ASME J. Turbomach.
,
121
(
1
), pp.
59
66
.10.1115/1.2841234
27.
Passrucker
,
H.
,
Engber
,
M.
,
Kablitz
,
S.
, and
Hennecke
,
D. K.
,
2003
, “
Effect of Forward Sweep in a Transonic Compressor Rotor
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
217
(
4
), pp.
357
365
.10.1243/095765003322315414
28.
Corsini
,
A.
, and
Rispoli
,
F.
,
2004
, “
Using Sweep to Extend the Stall Free Operating Range in Axial Fan Rotors
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
218
(
3
), pp.
129
139
.10.1243/095765004323049869
29.
McNulty
,
G. S.
,
Decker
,
J. J.
,
Beacher
,
B. F.
, and
Khalid
,
S. A.
,
2004
, “
The Impact of Forward Swept Rotors on Tip Clearance Flows in Subsonic Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
445
454
.10.1115/1.1773852
30.
Krishnakumar
,
O. G.
,
Govardhan
,
M.
, and
Sitaram
,
N.
,
2007
, “
Effect of Forward Sweep on the Performance and Stall Margin of a Low-Speed Axial Compressor
,”
Intl. J. Turbo Jet Engines
, 24, pp. 195-205.10.1515/TJJ.2007.24.3-4.195
31.
Govardhan
,
M.
,
Krishna Kumar
,
O. G.
, and
Sitaram
,
N.
,
2007
, “
Investigations on Low-Speed Axial Compressor With Forward and Backward Sweep
,”
J. Therm. Sci.
,
16
(
2
), pp.
121
133
.10.1007/s11630-007-0121-3
32.
Ramakrishna
,
P. V.
, and
Govardhan
,
M.
,
2009
, “
Combined Effects of Forward Sweep and Tip Clearance on the Performance of Axial Flow Compressor Stage
,”
ASME Paper No. GT2009-59840.
33.
Wang
,
J.
, and
Kruyt
,
N.
,
2022
, “
Effects of Sweep, Dihedral and Skew on Aerodynamic Performance of Low-Pressure Axial Fans With Small Hub-to-Tip Diameter Ratio
,”
ASME J. Fluid Eng.
,
144
(
1
), p.
011203
.10.1115/1.4051542
34.
Kumar
,
A.
, and
Pradeep
,
A. M.
,
2021
, “
Experimental Investigation of Tandem Rotor Under Clean and Radially Distorted Inflows
,”
J. Propul. Power Res.
,
10
(
3
), pp.
247
261
.10.1016/j.jppr.2021.05.004
35.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
.10.1115/1.1861912
36.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
,
1999
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
121
(
3
), pp.
469
480
.10.1115/1.2841339
37.
Khalid
,
S. A.
,
Khalsa
,
A. S.
,
Waitz
,
I. A.
,
Tan
,
C. S.
,
Greitzer
,
E. M.
,
Cumpsty
,
N. A.
,
Adamczyk
,
J. J.
, and
Marble
,
F. E.
,
1999
, “
Endwall Blockage in Axial Compressors
,”
ASME J. Turbomach.
,
121
(
3
), pp.
499
509
.10.1115/1.2841344
You do not currently have access to this content.