Abstract

The time-averaged film thickness of the coating on a smooth strip from a bath can be predicted by the Landau-Levich (LL), and Derjaguin theory for low inertia and low Capillary number,Ca. Using the smoothed particle hydrodynamics (SPH) method incorporating adhesion force of the liquid to the strip surface, cohesion between liquid particles, and robustly tuned artificial viscosity, the flow and the evolution of meniscus of liquid drag-out within Ca range 0.06Ca0.25 and fluid Property number P0=0.1 is studied to characterize the stagnation point locations and the meniscus shape. The predicted time-averaged film thicknesses match closely with the LL prediction and previously published experimental data and other theoretical models. The distances of the stagnation points from the strip Xstg are within (2.5±0.3)h and insensitive to Ca. These stagnation points are always on the meniscus air–liquid interface. However, the stagnation point elevation from the bath liquid level,Ystg increase with Ca.

References

1.
Kizito
,
J. P.
,
Kamotani
,
Y.
, and
Ostrach
,
S.
,
1999
, “
Experimental Free Coating Flows at High Capillary and Reynolds Number
,”
Exp. Fluids
,
27
(
3
), pp.
235
243
.10.1007/s003480050348
2.
Ellen
,
C.
, and
Tu
,
C.
,
1983
, “
An Analysis of Jet Stripping of Molten Metallic Coating
,”
Proceedings of Eighth Australian Fluid Mechanics Conference
, University of Newcastle, NSW, Australia, Nov. 28–Dec. 2, pp. 2C.4-2C.7.
3.
Ellen
,
C.
, and
Tu
,
C.
,
1984
, “
An Analysis of Jet Stripping of Liquid Coatings
,”
ASME J. Fluids Eng.
, 106(4), pp.
399
404
.10.1115/1.3243137
4.
Lang
,
K. C.
, and
Tallmadge
,
J. A.
,
1971
, “
A Postwithdrawal Expression for Drainage on Flat Plates
,”
Ind. Eng. Chem. Fundam.
,
10
(
4
), pp.
648
650
.10.1021/i160040a023
5.
Landau
,
L.
, and
Levich
,
B.
,
1943
, “
Dragging of a Liquid by a Moving Plate
,”
Dynamics of Curved Fronts
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
141
153
.
6.
Rio
,
E.
, and
Boulogne
,
F.
,
2017
, “
Withdrawing a Solid From a Bath: How Much Liquid is Coated?
,”
Adv. Colloid Interface Sci.
,
247
, pp.
100
114
.10.1016/j.cis.2017.01.006
7.
Maleki
,
M.
,
Reyssat
,
M.
,
Restagno
,
F.
,
Quéré
,
D.
, and
Clanet
,
C.
,
2011
, “
Landau–Levich Menisci
,”
J. Colloid Interface Science
,
354
(
1
), pp.
359
363
.10.1016/j.jcis.2010.07.069
8.
Gans
,
A.
,
Dressaire
,
E.
,
Colnet
,
B.
,
Saingier
,
G.
,
Bazant
,
M. Z.
, and
Sauret
,
A.
,
2019
, “
Dip-Coating of Suspensions
,”
Soft Matter
,
15
(
2
), pp.
252
261
.10.1039/C8SM01785A
9.
Derjaguin
,
B.
,
1943
, “
On the Thickness of the Liquid Film Adhering to the Walls of a Vessel After Emptying Acta Physicochim
,”
URSS
,
20
, p.
349
.10.1016/0079-6816(93)90022-N
10.
White
,
D. A.
, and
Tallmadge
,
J. A.
,
1965
, “
Theory of Drag Out of Liquids on Flat Plates
,”
Chem. Eng. Sci.
,
20
(
1
), pp.
33
37
.10.1016/0009-2509(65)80041-0
11.
Wilson
,
S. D.
,
1982
, “
The Drag-Out Problem in Film Coating Theory
,”
J. Eng. Math.
,
16
(
3
), pp.
209
221
.10.1007/BF00042717
12.
Orsini
,
G.
, and
Tricoli
,
V.
,
2017
, “
A Scaling Theory of the Free-Coating Flow on a Plate Withdrawn From a Pool
,”
Phys. Fluids
,
29
(
5
), p.
052106
.10.1063/1.4984034
13.
Filali
,
A.
,
Khezzar
,
L.
, and
Mitsoulis
,
E.
,
2013
, “
Some Experiences With the Numerical Simulation of Newtonian and Bingham Fluids in Dip Coating
,”
Comput. Fluids
,
82
, pp.
110
121
.10.1016/j.compfluid.2013.04.024
14.
Krechetnikov
,
R.
, and
Homsy
,
G. M.
,
2006
, “
Surfactant Effects in the Landau–Levich Problem
,”
J. Fluid Mech.
,
559
, pp.
429
450
.10.1017/S0022112006000425
15.
Mayer
,
H.
, and
Krechetnikov
,
R.
,
2012
, “
Landau-Levich Flow Visualization: Revealing the Flow Topology Responsible for the Film Thickening Phenomena
,”
Phys. Fluids
,
24
(
5
), p.
052103
.10.1063/1.4703924
16.
Xue
,
N.
,
Pack
,
M. Y.
, and
Stone
,
H. A.
,
2020
, “
Marangoni-Driven Film Climbing on a Draining Pre-Wetted Film
,”
J. Fluid Mech.
,
886
, pp. A24-1–A24-25.10.1017/jfm.2019.1071
17.
Lee
,
C. Y.
, and
Tallmadge
,
J. A.
,
1973
, “
The Stagnation Point in Free Coating
,”
AIChE J.
,
19
(
4
), pp.
865
866
.10.1002/aic.690190435
18.
Adami
,
S.
,
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2012
, “
A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
231
(
21
), pp.
7057
7075
.10.1016/j.jcp.2012.05.005
19.
Akinci
,
N.
,
Akinci
,
G.
, and
Teschner
,
M.
,
2013
, “
Versatile Surface Tension and Adhesion for Sph Fluids
,”
Comput. Graph.
,
32
(
6
), pp.
1
8
.10.1145/2508363.2508395
20.
Akinci
,
N.
,
Ihmsen
,
M.
,
Akinci
,
G.
,
Solenthaler
,
B.
, and
Teschner
,
M.
,
2012
, “
Versatile Rigid-Fluid Coupling for Incompressible SPH
,”
ACM Trans. Graph.
,
31
(
4
), pp.
1
8
.10.1145/2185520.2185558
21.
Lucy
,
L. B.
,
1977
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astronom. J.
,
82
, pp.
1013
1024
.10.1086/112164
22.
Monaghan
,
J. J.
,
2000
, “
SPH Without a Tensile Instability
,”
J. Comput. Phys.
,
159
(
2
), pp.
290
311
.10.1006/jcph.2000.6439
23.
Liu
,
W.-B.
,
Ma
,
D.-J.
,
Zhang
,
M.-Y.
,
He
,
A.-M.
,
Liu
,
N.-S.
, and
Wang
,
P.
,
2021
, “
A New Surface Tension Formulation in Smoothed Particle Hydrodynamics for Free-Surface Flows
,”
J. Comput. Phys.
,
439
, p.
110203
.10.1016/j.jcp.2021.110203
24.
Tartakovsky
,
A. M.
, and
Panchenko
,
A.
,
2016
, “
Pairwise Force Smoothed Particle Hydrodynamics Model for Multiphase Flow: Surface Tension and Contact Line Dynamics
,”
J. Comput. Phys.
,
305
, pp.
1119
1146
.10.1016/j.jcp.2015.08.037
25.
Ordoubadi
,
M.
,
Yaghoubi
,
M.
, and
Yeganehdoust
,
F.
,
2017
, “
Surface Tension Simulation of Free Surface Flows Using Smoothed Particle Hydrodynamics
,”
Sci. Iran.
,
24
(
4
), pp.
2019
2033
.10.24200/sci.2017.4291
26.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
27.
Zhang
,
M.
,
2010
, “
Simulation of Surface Tension in 2D and 3D With Smoothed Particle Hydrodynamics Method
,”
J. Comput. Phys.
,
229
(
19
), pp.
7238
7259
.10.1016/j.jcp.2010.06.010
28.
Tartakovsky
,
A.
, and
Meakin
,
P.
,
2005
, “
Modeling of Surface Tension and Contact Angles With Smoothed Particle Hydrodynamics
,”
Phys Rev E Stat Nonlin Soft Matter Phys
,
72
(
2 Pt 2
), p.
026301
.10.1103/PhysRevE.72.026301
29.
Monaghan
,
J. J.
,
2005
, “
Smoothed Particle Hydrodynamics
,”
Rep. Prog. Phys.
,
68
(
8
), pp.
1703
1759
.10.1088/0034-4885/68/8/R01
30.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Notices Royal Astronom. Soc.
,
181
(
3
), pp.
375
389
.10.1093/mnras/181.3.375
31.
de Wit
,
L.
,
2006
, “
Smoothed Particle Hydrodynamics. A Study of the Possibilities of SPH in Hydraulic Engineering
,”
32.
Antuono
,
M.
,
Colagrossi
,
A.
, and
Marrone
,
S.
,
2012
, “
Numerical Diffusive Terms in Weakly-Compressible SPH Schemes
,”
Comput. Phys. Commun.
,
183
(
12
), pp.
2570
2580
.10.1016/j.cpc.2012.07.006
33.
Antuono
,
M.
,
Colagrossi
,
A.
,
Marrone
,
S.
, and
Molteni
,
D.
,
2010
, “
Free-Surface Flows Solved by Means of SPH Schemes With Numerical Diffusive Terms
,”
Comput. Phys. Commun.
,
181
(
3
), pp.
532
549
.10.1016/j.cpc.2009.11.002
34.
Monaghan
,
J.
, and
Pongracic
,
H.
,
1985
, “
Artificial Viscosity for Particle Methods
,”
Appl. Numer. Math.
,
1
(
3
), pp.
187
194
.10.1016/0168-9274(85)90015-7
35.
Jin
,
B.
,
Acrivos
,
A.
, and
Münch
,
A.
,
2005
, “
The Drag Out Problem in Film Coating
,”
Phys. Fluids
,
17
(
10
), p.
103603
.10.1063/1.2079927
36.
Jenny
,
M.
, and
Souhar
,
M.
,
2009
, “
Numerical Simulation of a Film Coating Flow at Low Capillary Numbers
,”
Comput. Fluids
,
3
(
9
), pp.
1823
1832
.10.1016/j.compfluid.2009.04.006
37.
Savelski
,
M.
,
Shetty
,
S.
,
Kolb
,
W.
, and
Cerro
,
R.
,
1995
, “
Flow Patterns Associated With the Steady Movement of a Solid/Liquid/Fluid Contact Line
,”
J. Colloid Interface Sci.
,
176
(
1
), pp.
117
127
.10.1006/jcis.1995.0015
You do not currently have access to this content.