Abstract

The Tesla–diode valve, with no moving parts, allows restricted flow in one direction. It has many potential applications in different industrial situations. Despite the application of the valve and the importance of the effect of flow phenomena on the Tesla valve's performance, very few studies have experimentally investigated the motion of flow within the Tesla valve. This study aims to contribute to this growing area of research on the performance of Tesla valves by demonstrating the flow phenomena and the flow conditions needed to be used in numerical studies. In this work, the effect of direction of the flow and Reynolds number on the flow phenomena generated in a Tesla–diode valve is studied. Particle shadowgraph velocimetry (PSV) is utilized to investigate and visualize the velocity field. The results of this study confirm some of the phenomena that have been observed using numerical simulations. It also highlights the flow phenomena leading to an increase in the diodicity by an increase in the number of Tesla loops in the valve. An important observation often ignored in numerical simulation is the presence of unsteady behavior and vortex shedding for higher Reynolds number flows.

References

1.
Tesla
,
N.
,
1920
, “
Valvular Conduit
,” U.S. Patent No. 1,329,559.
2.
Bardell
,
R. L.
,
2000
, “
The Diodicity Mechanism of Tesla-Type No-Moving-Parts Valves
,” Ph.D. thesis,
University of Washington,
Seattle, WA.
3.
Nobakht
,
A. Y.
,
Shahsavan
,
M.
, and
Paykani
,
A.
,
2013
, “
Numerical Study of Diodicity Mechanism in Different Tesla-Type Microvalves
,”
J. Appl. Res. Technol.
,
11
(
6
), pp.
876
85
.10.1016/S1665-6423(13)71594-3
4.
Thompson
,
S. M.
,
Jamal
,
T.
,
Paudel
,
B. J.
, and
Walters
,
D. K.
,
2013
, “
Transitional and Turbulent Flow Modeling in a Tesla Valve
,”
Fluids Eng. Syst. Technol.
,
7
, pp.
1
7
.10.1115/IMECE2013-65526
5.
Butler
,
R.
,
1998
, “
SAGD Comes of Age!
,”
J. Can. Pet. Technol.
,
37
(
7
), pp.
9
12
.
6.
de Vries
,
S. F.
,
Florea
,
D.
,
Homburg
,
F. G. A.
, and
Frijns
,
A. J. H.
,
2017
, “
Design and Operation of a Tesla-Type Valve for Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
105
, pp.
1
11
.10.1016/j.ijheatmasstransfer.2016.09.062
7.
Forster
,
F. K.
,
Bardell
,
R. L.
,
Afromowitz
,
M. A.
,
Sharma
,
N. R.
, and
Blanchard
,
A.
,
1995
, “
Design, Fabrication and Testing of Fixed-Valve Micro-Pumps
,” ASME, 234, pp.
39
44
.
8.
Anagnostopoulos
,
J. S.
, and
Mathioulakis
,
D. S.
,
2005
, “
Numerical Simulation and Hydrodynamic Design Optimization of a Tesla-Type Valve for Micropumps
,”
Proceedings of the Third IASME/WSEAS International Conference on Fluid Dynamics and Aerodynamics
, Corfu, Greece, Aug. 20–22, pp.
195
201
.https://www.researchgate.net/publication/266574843_Numerical_Simulation_and_Hydrodynamic_Design_Optimization_of_a_Tesla- Type_Valve_for_Micropumps
9.
Abdelwahed
,
M.
,
Chor
,
N.
, and
Malek
,
R.
,
2019
, “
Reconstruction of Tesla Micro-Valve Using Topological Sensitivity Analysis
,”
Adv. Nonlinear Anal.
,
9
(
1
), pp.
567
590
.10.1515/anona-2020-0014
10.
Ansari
,
S.
,
Bayans
,
M.
,
Rasimarzabadi
,
F.
, and
Nobes
,
D. S.
,
2018
, “
Flow Visualization of the Newtonian and Non-Newtonian Behavior of Fluids in a Tesla-Diode Valve
,” Fifth International Conference on Experimental Fluid Mechanics (ICEFM)
, Munich, Germany, pp.
1
6
.
11.
Truong
,
T. Q.
, and
Nguyen
,
N.-T.
,
2003
, “
Simulation and Optimization of Tesla Valves
,”
Opt. Express
,
16
, p.
14064
.
12.
Gamboa
,
A. R.
,
Morris
,
C. J.
, and
Forster
,
F. K.
,
2005
, “
Improvements in Fixed-Valve Micropump Performance Through Shape Optimization of Valves
,”
ASME J. Fluid Eng.
,
127
(
2
), pp.
339
346
.10.1115/1.1891151
13.
Zhang
,
S.
,
Winoto
,
S. H.
, and
Low
,
H. T.
,
2007
, “
Performance Simulations of Tesla Microfluidic Valves
,”
First International Conference on Integration and Commercialization of Micro and Nanosystems
, Parts A and B. Sanya, Hainan, China. Jan. 10–13, 2007. pp.
1
5
.10.1115/MNC2007-21107
14.
Shah
,
D.
, and
Sureka
,
U.
,
2019
, “
Stability Improvement in Natural Circulation Loop Using Tesla
,”
Int. J. Mech. Prod. Eng. Res. Dev.
,
9
(
6
), pp.
13
24
.
15.
Qian
,
J.
,
Chen
,
M.
,
Liu
,
X.
, and
Jin
,
Z.
,
2019
, “
A Numerical Investigation of the Flow of Nanofluids Through a Micro Tesla Valve
,”
J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.)
,
20
(
1
), pp.
50
60
.10.1631/jzus.A1800431
16.
Thompson
,
S. M.
,
Paudel
,
B. J.
,
Jamal
,
T.
, and
Walters
,
D. K.
,
2014
, “
Numerical Investigation of Multistaged Tesla Valves
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081102
.10.1115/1.4026620
17.
Lin
,
S.
,
Zhao
,
L.
,
Guest
,
J. K.
,
Weihs
,
T. P.
, and
Liu
,
Z.
,
2015
, “
Topology Optimization of Fixed-Geometry Fluid Diodes
,”
ASME J. Mech. Des.
,
137
(
8
), p.
081402
.10.1115/1.4030297
18.
Van Oudheusden
,
B. W.
,
2013
, “
PIV-Based Pressure Measurement
,”
Meas. Sci. Technol.
,
24
(
3
), p.
032001
.10.1088/0957-0233/24/3/032001
19.
Raffel
,
J.
,
2019
, “
Influence of the Reynolds Number on the Stationarity of the Flow Field in a Tesla Diode
,” Bachelor thesis, Institute of Turbomachinery and Fluid Dynamics (
Institut für Turbomaschinen und Fluid-Dynamik
), Garbsen, Germany.
20.
Ansari
,
S.
,
Yusuf
,
Y.
,
Sabbagh
,
R.
, and
Nobes
,
D. S.
,
2019
, “
Determining the Pressure Distribution of a Multi-Phase Flow Through a Pore Space Using Velocity Measurement and Shape Analysis
,”
J. Meas. Sci. Technol.
,
30
(
5
), p.
054004
.10.1088/1361-6501/ab0afc
21.
Ansari
,
S.
,
Yusuf
,
Y.
,
Sabbagh
,
R.
,
Soltani
,
H.
, and
Nobes
,
D. S.
,
2018
, “
An Imaging Derivation of the Pressure Field of a Multi-Phase Flow in a Porous Media Using μ-SPIV
,”
19th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics
, Lisbon, Portugal, July 16–19, pp.
1
12
.
22.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
,
Springer-Verlag Berlin, Heidelberg.
23.
Ansari
,
S.
,
2016
, “
Newtonian and Non-Newtonian flows Through Mini-Channels and Micro-Scale Orifices for SAGD Applications
,” M.Sc. thesis,
University of Alberta
, Edmonton, AB, Canada.
24.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
, “
PIV Uncertainty and Measurement Accuracy
,”
Particle Image Velocimetry
,
Springer
,
Cham, Switzerland
, pp.
203
241
.
25.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.10.1088/0957-0233/26/7/074002
26.
Yusuf
,
Y.
,
Ansari
,
S.
,
Bayans
,
M.
,
Sabbagh
,
R.
,
El Hassan
,
M.
, and
Nobes
,
D. S.
,
2018
, “
Study of Flow Convergence in Rectangular Slots Using Particle Shadowgraph Velocimetry
,”
Proceedings of the Fifth International Conference on Experimental Fluid Mechanics
–(
ICEFM
), Munich, Germany, July 2–4, pp.
1
8
.https://www.researchgate.net/publication/327200119_Study_of_Flow_Convergence_in_Rectangular_Slots_using_Particle_Shadowgraph_Velocimetry
You do not currently have access to this content.