Abstract

Flow instability is the intricate phenomenon in the annular linear induction pump (ALIP) when the pump runs at off-design working condition. A three-dimensional (3D) numerical model is built to simulate the flow in the pump channel. The pump heads at different flow rates are accurately predicted by comparing with experiment. The simulation results show the fluid velocity is circumferentially nonuniform in the pump channel even at the nominal flow rate. The flow in the middle sector continuously decelerates to nearly zero with the reducing flow rate. Reversed flow occurs in the azimuthal plane, followed by vortex flow. The reason for the heterogeneous velocity field is attributed to the mismatch between nonuniform Lorentz force and relatively even pressure gradient. It is seen that the flow in the region of small Lorentz force has to sacrifice its velocity to match with the pressure gradient. An analytic expression of the axial Lorentz force is then developed and it is clearly demonstrated the Lorentz force could be influenced by the profiles of velocity and radial magnetic flux density. The coupling between velocity and magnetic field is studied by analyzing the magnitudes of different terms in the dimensionless magnetic induction equation. It is found the dissipation term is determined by not only the magnetic Reynolds number but also the square of wave number of the disturbance in each direction. The smaller disturbing wave number weakens the dissipating effect, resulting in the larger nonuniform magnetic field and axial Lorentz force.

References

1.
Yang
,
C. C.
, and
Kraus
,
S.
,
1977
, “
A Large Electro-Magnetic Pump for High Temperature LMFBR Applications
,”
Nucl. Eng. Des.
,
44
(
3
), pp.
383
395
.10.1016/0029-5493(77)90173-X
2.
Ota
,
H.
,
Katsuki
,
K.
,
Funato
,
M.
,
Taguchi
,
J.
,
Fanning
,
A. W.
,
Doi
,
Y.
,
Nibe
,
N.
,
Ueta
,
M.
, and
Inagaki
,
T.
,
2004
, “
Development of 160 m3/Min Large Capacity Sodium-Immersed Self-Cooled Electromagnetic Pump
,”
J. Nucl. Sci. Technol.
,
41
(
4
), pp.
511
523
.10.1080/18811248.2004.9715514
3.
Asada
,
T.
,
Aizawa
,
R.
,
Suzuki
,
T.
,
Fujishima
,
Y.
, and
Hoashi
,
E.
,
2015
, “
3D MHD Simulation of Pressure Drop and Fluctuation in Electromagnetic Pump Flow
,”
Mech. Eng. J.
,
2
(
5
), p. 15–00230. 10.1299/mej.15-00230
4.
Imazio
,
P. R.
, and
Gissinger
,
C.
,
2016
, “
Instability in Electromagnetically Driven Flows—II
,”
Phys. Fluids
,
28
(
3
), p.
034102
.10.1063/1.4942448
5.
Roman
,
C.
,
2013
, “
Studies of the Annular Linear Induction Pumps for Sodium Circuits Use in Nuclear Plants
,”
International Youth Conference on Energy
,
Siofok, Hungary
, June 6–8, pp.
1
10
.
6.
Gailitis
,
A.
, and
Lielausis
,
O.
,
1975
, “
Instability of Homogeneous Velocity Distribution in an Induction-Type MHD Machine
,”
Magnetohydrodynamics
,
1
1
(
1
), pp.
69
79
. http://mhd.sal.lv/contents/1975/1/MG.11.1.12.R.html
7.
Kirillov
,
I. R.
, and
Ostapenko
,
V. P.
,
1987
, “
Local Characteristics of a Cylindrical Induction Pump for Rm s > 1
,”
Magnetohydrodynamics
,
23
(
2
), pp.
196
202
. http://mhd.sal.lv/contents/1987/2/MG.23.2.14.R.html
8.
Araseki
,
H.
,
Kirillov
,
I. R.
,
Preslitsky
,
G. V.
, and
Ogorodnikov
,
A. P.
,
2000
, “
Double-Supply-Frequency Pressure Pulsation in Annular Linear Induction Pump—Part I: Measurement and Numerical Analysis
,”
Nucl. Eng. Des.
,
195
(
1
), pp.
85
100
.10.1016/S0029-5493(99)00175-2
9.
Araseki
,
H.
,
Kirillov
,
I. R.
,
Preslitsky
,
G. V.
, and
Ogorodnikov
,
A. P.
,
2000
, “
Double-Supply-Frequency Pressure Pulsation in Annular Linear Induction Pump—Part II: Reduction of Pulsation by Linear Winding Grading at Both Stator Ends
,”
Nucl. Eng. Des.
,
200
(
3
), pp.
397
406
.10.1016/S0029-5493(00)00254-5
10.
Araseki
,
H.
,
Kirillov
,
I. R.
,
Preslitsky
,
G. V.
, and
Ogorodnikov
,
A. P.
,
2004
, “
Magnetohydrodynamic Instability in Annular Linear Induction Pump—Part I: Experiment and Numerical Analysis
,”
Nucl. Eng. Des.
,
227
(
1
), pp.
29
50
.10.1016/j.nucengdes.2003.07.001
11.
Araseki
,
H.
,
Kirillov
,
I. R.
,
Preslitsky
,
G. V.
, and
Ogorodnikov
,
A. P.
,
2006
, “
Magnetohydrodynamic Instability in Annular Linear Induction Pump—Part II: Suppression of Instability by Phase Shift
,”
Nucl. Eng. Des.
,
236
(
9
), pp.
965
974
.10.1016/j.nucengdes.2005.09.007
12.
Kirillov
,
I. R.
, and
Obukhov
,
D. M.
,
2003
, “
Two Dimensional Model for Analysis of Cylindrical Linear Induction Pump Characteristics: Model Description and Numerical Analysis
,”
Energy Convers. Manage.
,
44
(
17
), pp.
2687
2697
.10.1016/S0196-8904(03)00050-5
13.
Kim
,
H. R.
, and
Lee
,
Y. B.
,
2012
, “
MHD Stability Analysis of a Liquid Sodium Flow at the Annular Gap of an EM Pump
,”
Ann. Nucl. Energy
,
43
, pp.
8
12
.10.1016/j.anucene.2011.12.007
14.
Zhao
,
R.
,
Li
,
H.
, and
Zhang
,
D. S.
,
2018
, “
Numerical Investigation of Pump Performance and Internal Characteristics in ALIP With Different Winding Schemes
,”
Int. J. Appl. Electromagn. Mech.
,
57
(
3
), pp.
1
13
.10.3233/JAE-170086
15.
Abdullina
,
K. I.
,
Bogovalov
,
S. V.
, and
Zaikov
,
Y. P.
,
2018
, “
3D Numerical Modeling of Liquid Metal Turbulent Flow in an Annular Linear Induction Pump
,”
Ann. Nucl. Energy
,
111
, pp.
118
126
.10.1016/j.anucene.2017.08.010
16.
Asada
,
T.
,
Hirata
,
Y.
,
Aizawa
,
R.
,
Fujishima
,
Y.
,
Suzuki
,
T.
, and
Hoashi
,
E.
,
2015
, “
Development of a Three-Dimensional Magnetohydrodynamics Code for Electromagnetic Pumps
,”
J. Nucl. Sci. Technol.
,
52
(
5
), pp.
633
640
.10.1080/00223131.2014.961988
17.
Gissinger
,
C.
,
Imazio
,
P. R.
, and
Fauve
,
S.
,
2016
, “
Instability in Electromagnetically Driven Flows—I
,”
Phys. Fluids
,
28
(
3
), p.
034101
.10.1063/1.4942447
18.
Roman
,
C.
,
Dumont
,
M.
,
Letout
,
S.
,
Courtessole
,
C.
,
Vitry
,
S.
,
Rey
,
F.
, and
Fautrelle
,
Y.
,
2014
, “
Modeling of Fully Coupled MHD Flows in Annular Linear Induction Pumps
,”
Int. J. Appl. Electromagn. Mech.
,
44
(
2
), pp.
155
162
.10.3233/JAE-141755
19.
Biro
,
O.
, and
Preis
,
K.
,
1989
, “
On the Use of the Magnetic Vector Potential in the Finite-Element Analysis of Three-Dimensional Eddy Currents
,”
IEEE Trans. Magn.
,
25
(
4
), pp.
3145
3159
.10.1109/20.34388
20.
Abdullina
,
K. I.
, and
Bogovalov
,
S. V.
,
2015
, “
3-D Numerical Modeling of MHD Flows in Variable Magnetic Field
,”
Phys. Procedia
,
72
, pp.
351
357
.10.1016/j.phpro.2015.09.109
You do not currently have access to this content.