
3 The film thickness was calculated at the beginning, middle, 
and end of each section assuming that the surfaces were rigid. 

4 The viscosity was calculated from Equation (14) assuming 
Pi" 0. 

5 Using results obtained in steps 3 and 4, Equation (11) was 
solved for pressure in the middle of every section. 

6 Using results from step 5, Equation (13) was solved for new 
temperature field. 

7 New viscosity was now calculated using Equation (14). 
8 With the pressures obtained in step 5, deformation was 

calculated using Equation (15). 
9 New film thickness was calculated by Equation (16). 

h = hmiB + - H(£) (16) 
-1 i 

10 New pressures were then recalculated using viscosity from 
step 7 and film thickness from step 9. 

11 This process was repeated until the pressures, tempera-
tures, and deformations converged within a prescribed limit of 
error. 

In this analysis the maximum prescribed error was specified to 
be less than 0.1 per cent. The 

771 

s 
3 = 1 

P j k ~ P i " ' j 

771 

E 
3 = 1 

Pi* | 

After some study of the effect of mesh size on error and time for 
convergence we set m = 50 for these calculations and it took 
approximately forty-five iterations k ~ 45 before convergence to 
the prescribed error occurred. Inspection of pressure distribution 
at the k and k — 1 iteration showed maximum pressure variation 
at any point to be less than 2 per cent. 

Using the foregoing equations and the low VI oil characteristics 
given in Appendix 2, Table 1 was calculated. Likewise, using 
the elastohydrodj'namic analysis outlined in steps 1 to 11 com-
parison on performance with the low and high VI oils was made 
and is given in Table 2. The characteristics of the low and 
high VI oils are given in Appendix 2. In the numerical analysis 
a table of "look up" obtained from Fig. 9 was used for the viscosity 
calculations rather than Equation (14). This was done in order 
to obtain higher accuracy. 

A P P E N D I X 2 
Properties of the Blended Oils 

Pressure High VI Low VI 
psig Viscosity in Centipoises 

1 Temp. 100° F 210° F 100° F 210° F 
0 57.1 6.83 56 5.4 
2000 83 9 84 7 
4000 110 11 120 9 
6000 150 14 174 11 
8000 200 17 252 14 
10,000 257 21 370 18 
20,000 970 51 2520 57 
40,000 11,100 250 1.1 X 105 570 
60,000 1.3 X 105 1060 4 X 10« 5400 
80,000 1.5 X 10s 4110 1.6 X 103 43,000 
100,000 1.7 X 107 15,400 6.7 X 10' 3.2 X 105 

VI 102 15 
Density at 76°F 0.85 gm/cm3 0.90 gm/cm3 

Acknowledgment. These oils were blended and supplied for this 
program with the foregoing data by Mr. H. A. Hartung of the 
Atlantic Refining Compan)r. 

D I S C U S S I O N 

H . Por i tsky 3 

This paper considers (for the first time so far as I know) rolling 
contact between cylinders, including effect of change of viscosity 
with both pressure and temperature, as well as the effect of deforma-
tion contact surfaces. It is, therefore, in my opinion, a more 
complete treatment than has been hitherto available. Calcula-
tions of this kind will eventually enable engineers to choose a 
lubricant most suitable for any design of gears, cylindrical 
rollers, or cams, purely from the physical characteristics of the 
lubricant and the load, speed, and other features of the mechani-
cal design. 

The effect of temperature is calculated on the assumption that 
all the heat, developed is taken up by the oil film. An estimate 
should be made of the effect of heat conductivity, since it is cer-
tainly true that the contacting surfaces absorb heat, and in the 
process of heating up will keep the film temperature down. 

If possible, a comparison should be made between the rate of 
heat flow into the lubricant and the power losses in the lubricant 
in a gear set, as obtained, for instance, by D. W. Dudle}' of the 
General Electric Company. 

The finite difference equation which replaces Equation '(10), 
namely, Equations (12, 13), is solved, along with the integral re-
lation (15), by a successive approximation process, outlined in 
steps (1-11) on pages 221, 222. It would be of interest to describe 
the calculation in more detail, stating how many points on the 
contact- strip are used, how many repetitions were necessary to 
secure convergence, how accurate the final value may be, etc. 

I take particular exception to the use of Equation (15) for the 
calculation of the deformation of the surface due to a given pres-
sure distribution. No mention is made of what the relation be-
tween £ and x is, nor is any calculation of the displacement beyond 
the pressure area given. Equation (15) must be based on con-
formal mapping of the half plane on a semi-infinite strip, with 
the pressure interval going into the edge of the strip. A method 
which lends itself to greater accuracy is described in Poritsky, 
reference [8], in which the displacement due to the Hertz effect 
is obtained analytically (both inside and outside the Hertz area) 
and the added deformations due to the "tails" of the pressure 
distribution are computed by a numerical method which is much 
simpler than the one used by the authors. Finally, I am surprised 
that no linear term A + Bx has been added to the film thickness 
corresponding to a small relative rotation of the contacting mem-
bers, since a rigid displacement may also be added to any solu-
tion of an elastic problem. 

Incidentally, the same paper (Poritsky, reference [8]) gives a 
proof of the Hertzian nature of the load distribution which can 
be easily carried over to the case where both the pressure and tem-
perature vary. This proof is based on the fact that the function 

P = ( > 
J P-

reaches a nearly constant value for the high-pressure areas; this 
integral remains nearly constant even when the viscosity varies 
both with temperature and pressure, just so long as the viscosity 
is large. One thus does not have to depend upon the complicated 
numerical integrations of the equations mentioned to reach the 
conclusion that the pressure distribution is nearly Hertzian over 
the major part of the contact area. 

The curves of Fig. 4 give photoelastic constant-shear curves for 
both dry and wet lubrication. These curves might be compared 
with the curves computed by H. Poritsky in "Stresses and De-
flections of Cylindrical Bodies in Contact With Application to Con-

3 Consulting Engineer, General Electric Company , Schenectady, 
N . Y . M e m . A S M E . 
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tact of Gears and of Locomotive Wheels," Journal of Applied 
Mechanics, vol. 17, 1950, pp. 191-201. Figs. 10 and 12, in which 
are computed curves of constant shear for a Hertzian load ac-
companied bjr a shearing load which is proportional to it. 

Finally, since ball-bearing tests are used to confirm the theory, 
it is surprising that the differences between the contact stresses, 
displacements, and fluid flow between balls and races, and rolling 
cylinders is never mentioned. 

R. Rhoads Stephenson 4 

Part 1 

The theoretical work in this paper is quite remarkable in that 
an energy equation has been solved in conjunction with the 
elastohydrodynamic problem. The energy equation gives an 
approximation to the temperature field in the lubricant film and 
thus allows the effect of viscosity variations with temperature 
to be included. The authors make some assumptions, however, 
which do not apijear to be valid in the cases studied. For pur-
poses of discussion, it will be useful to present a brief derivation 
of the energy equation in the form used in the paper. 

Making the usual assumptions of lubrication theory, the 
energy equation in differential form may be shown to be [25] :5 

P 
buy 
dy) 

pcvu 
dT 
dx 

- K 
d2T 
dy2 

(18) 

where K — thermal conductivity, cv = specific heat at constant 
volume, p — mass density, and the other symbols are the same as 
defined in the paper. The left-hand side of this equation repre-
sents the heat generated due to viscous dissipation and the terms 
on the right represent the convection of heat along the film and 
the conduction of heat across the film, respectively. 

For the moment I will assume, as the authors did, that the tem-
perature is uniform across the film so that the last term in (18) is 
zero. (This assumption implies an adiabatic situation. However, 
assuming adiabatic conditions only requires that the temperature 
gradient is zero at the surfaces and it is possible to have large 
temperature variations across the film. For an example, see 
[26].) 

The velocity distribution within the film is given by 

A1 
2p 

where V2 is the velocity of the upper surface and Ui is the velocity 
of the lower surface in the -\-x direction. Note that the first two 
terms correspond to the velocity distribution that would occur in 
Poiseuille flow and the remaining terms represent that which 
would occur in Couette flow. Substituting equation (19) into the 
simplified form of equation (18) and integrating across the film 
3'ields the energy equation: 

h* (dp\2 p 
12~fx ( f x ) = PC° 

h3 M A 

_-12 P W 

+ (iU2 dT 
dx 

(20) 

Again the terms on the left represent the heat generated due 
to viscous dissipation. The first term may be associated with 
Poiseuille flow and the second with Couette flow. Under the 
condition of pure rolling studied in the paper, Ui = U2, and the 
Couette term vanishes. 

4 Graduate Student, Department of Mechanical Engineering, Car-
negie Institute of Technology, Pittsburgh, Pa. 

s Numbers 25 to 29 in brackets designate References at eiid of this 
discussion. 

Part 2 

The foregoing equation has been based on the assumption that 
there are no temperature variations across the film. It is doubt-
ful, however, whether this assumption is valid for heavily loaded 
contacts. An approximate analysis has been developed which 
allows the assumption of adiabatic surfaces (and hence uniform 
temperature across the film) to be cheeked. When applied to the 
physical situation studied in the paper, it is found that a con-
siderable amount of heat will be conducted across the film and 
that the assumption is not valid. 

The method is as follows: 

(1) We assume that the surfaces are adiabatic, solve the re-
sulting equations, and find the lubricant temperature at the sur-
face as a function of x. 

(2) We make use of the fact that the adiabatic condition im-
plies that the surface temperature of the metal must be the same 
as that of the lubricant. Therefore a point on the surface, 
traveling through the contact region, will experience a known 
temperature rise. 

(3) The amount of heat required to raise the surface tempera-
ture at the known rate is determined. 

(4) This quantity of heat is compared with the total heat 
generated within the contact region. If it is large compared with 
the total heat generated, then the surfaces cannot possibly be 
adiabatic. If it is small, then the adiabatic assumption is justified. 

Step 3 is a difficult problem and an approximate analysis is use-
ful in determining this quantity of heat. Consider a thin slice of 
material cut from the roller (or gear tooth) as shown in Fig. 11. 

Fig. 11 Co-ordinate system on the roller 

This slice extends to infinity in the ±z directions and in the -\-y 
direction (this is a new co-ordinate system set up on the slice). 
The thickness in the x direction, 2w, is taken very thin, and the 
planes x = ± i « are assumed to be insulated. As the slice moves 
through the contact region its surface is subjected to a known 
temperature rise. Knowing the surface velocity, the surface tem-
perature can be specified as a function of time. Therefore the 
temperature in the slice is only a function of y and the time r. 

The differential equation governing this situation is 

d26 _ ±dS 
dy2 a dr (21) 

where a is the thermal diffusivity and 6 is the difference between 
the actual temperature and the initial temperature. The initial 
temperature is assumed to be uniform. This is reasonable since 
this material has been out of the contact region for the longest 
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possible time and the temperature variations probably have had 
a chance to die out. The boundary conditions are: 

0 = 0 at r = 0 for y > 0 (22a) 

d = / ( T ) at y = 0 for r > 0 (226) 

8 ^ 0 as 2/ oo (22c) 

It is consistent with the adiabatic assumption to consider the 
lubricant and the surface to be at the same temperature before 
entering the contact region. Hence / (0) = 0. 

The differential equation (21) subject to the boundary condi-
tions (22) can be solved onee/ (r ) is specified. Detailed informa-
tion on the temperature distribution is not available for the solu-
tion presented in the paper so a linear variation is assumed, e.g., 
f(r) = ar. For this function the temperature distribution is given 
by 

6(y, r ) erfc V 
2 -y /o 

/ T \ 'A _ - S I ) 

- y { - ) « 

and the heat flux at the surface is 

Q = - K 
.30 
Zy y = 0 

2 ICa — 
\iraj 

T \ ' / 5 

The total heat added during the contact time r0 is 
4ICa 

Qt = 3(7ra) To 

(23) 

(24) 

(25) 

The foregoing solution depends on the assumption that the slices 
are insulated from one another so that there is no heat conduction 
in the x direction. This is a conservative assumption in the sense 
that conduction in the x direction would counteract large surface-
temperature gradients and would tend to make the surfaces less 
adiabatic (more isothermal). The amount of heat required to 
raise the surface temperature will thus be underestimated. 

This method will now be applied to the case for the high VI oil 
shown in Table 2 of the paper. For steel disks K = 6.95 X 10 ~3 

Btu/ft sec deg F and a = 1.26 X 10 " 4 ft2/sec. The temperature 
increase of approximately 300 cleg F will be assumed to take place 
over the width of the Hertzian contact region, 26. Based on the 
maximum pressure of 120,000 psi we find that 26 = 7.35 X 10 ~3 

feet. The surface speed of 785 ft/min gives a contact time r0 of 
5.65 X 10 - 4 seconds. Therefore we find that a = 5.3 X 105 deg 
F/sec and using equation (25) we find that 

Qt = 3.3 Btu/ft2 

For comparison purposes, the total amount of heat generated 
in the lubricant will be calculated. Nearly all of the viscous 
dissipation takes place within the Hertzian region, so it is con-
sistent to use 

' + 6 
= j _ r + W d p y 

26 J-b 12u' - 6 12/j\ dx ) 
dx (24a) 

Since detailed information for the viscosity variation, film 
thickness, and pressure distribution is not presented in the paper, 
Q' will be estimated by using typical values to evaluate the 
integrand. In the elastohydrodynamic problem, h is nearly 
constant over the contact region and is about 25 per cent greater 
than the minimum film thickness. Hence h will be considered 
to be 10 ~5 inches. The kinematic viscosity will be taken as 100 
centistokes and p = 1.7 slugs/ft3. The pressure gradient will be 
approximated by Pm„x/b. Using these values, it is found that 

Q' ~ 0.76 Btu/ft2 sec 

During the contact time the total amount of heat generated is 
Qt' = 4.5 X 10"4 Btu/ft2 (25a) 

The calculation of QT' is admittedly very approximate (es-
pecially in taking the average of the square of the pressure 
gradient). Perhaps the authors would numerically evaluate 
equation (24a) so as to provide a more accurate result. It is 
hard to believe, however, that the estimate would be off by 4 
orders of magnitude. Hence it may be concluded that there is 
not enough heat available to raise the surface temperature as 
fast as was anticipated. Therefore a large amount of the heat 
generated in the film will be conducted across the film to the 
walls rather than convected along the film. In this case the com-
plete energy equation (18) should be used. 

On the other hand, if QT' was much greater than QT, it would 
probably be valid to neglect the conduction term in equation 
(18), although it would be wise to check the effect of conduction 
in the x direction in the metal. 

One may ask if the assumption that the slice extends to infinity 
in the y direction is valid. Using equation (23) it can be shown 
that at the end of the contact time the temperature is just be-
ginning to be felt at a depth of about 0.01 in. Hence all of the 
temperature variations take place in a very thin surface layer. 

P a r t 3 

It is interesting that a deformation equation for finite cylinders 
was used in the elastohydrodynamic calculations. A develop-
ment of equation (15) can be found in reference [27]. Equation 
(15) is based upon the assumption that the pressure distribu-
tion is symmetric about the line r/ = 0. This is true for the 
Hertzian contact problem but it is not true for elastohydrody-
namic lubrication. This equation implies that the deformations 
are also symmetric about the line t] = 0, which does not agree 
with previous solutions [28, 29]. 

The method of reference [27] can be used to give a deformation 
equation for any pressure distribution. The combined deforma-
tion of both surfaces for cylinders of the same material and radius 

COS I - I I 

COS ^ + || 

+ cos 7] cos |>P(7?)dr? (26) 

where the integration is carried out over the entire pressure region. 
It is easily shown that for large values of R, and hence small 

angles of contact, equation (26) reduces to 

2 ( 1 - v 2 ) f » 
H(x) = — — ^ — In (x — s)2 P{s)ds + constant (27) 

J - c TTE 

which is the relation normally used for the deformation of in-
finite half spaces [29]. 
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Authors' Closure 
We wish to thank Dr. Poritskj' and Mr. Stephenson for their 

prepared discussions. It has been most gratifying to see the 
amount of interest that a number of other investigators have 
recently shown in our studies. We sincerely hope that others 
will attack related aspects of this problem for we feel that valua-
ble contributions can be made in this virgin field of thin film 
lubrication and its effect on failure of machine elements. 

Both discussers bring up the point of heat conduction. We 
have clearly stated that heat conduction has been neglected in 
the presented study. In fact our sixth recommendation suggests 
that future investigations should include heat conduction. Our 
eighth recommendation goes further and suggests that thermal 
stresses and thermal deformations caused by thermal gradients 
in the metal be considered in future analysis. 

Our criterion for rolling-element fatigue suggests that thermal 
stresses caused by thermal gradients within the metal play a 
major role on fatigue for different lubricants. We also recom-
mend the establishment of quantitative data on fatigue as a func-
tion of load, speed, and temperature. 

It must be recognized, however, that the amount of conduction 
will vary in different applications. In gear applications where 
sliding is considerably higher than in rolling elements the tem-
perature rise is considerably greater. We have made some esti-
mates between the heat flow into the lubricant and the power loss 
in a gear set as reported b}' D. W. Dudley of General Electric and 
found that the comparison is remarkably good. 

Mr. Stephenson introduced tremendous errors in his evalua-
tion of equation (24a) by making the following two assumptions 

dp 
dx 

_ Vn̂ x ^ _ cong£an|. _ 100 centistokes. 
b 

Fig. 12 

With reference to the elastic equation the last term of equation 
(15) considers the deformation caused by antisymmetric pres-
sure. This makes the comment by Mr. Stephenson invalid. 

The comments raised b\r Dr. Poritsky are discussed next. 

(1) The relation between £ and x as seen from Fig. 12 is x = R 
sin f. 

(2) Calculation beyond the pressure area. 

It should be noted that equation (15) results from 

dff(£) H k + 1 
4A7T 

In ^ + In ^ 

The pressure gradients are considerably higher than p^^/b on 
both the leading and trailing edges of the contact zone, as seen 
from Fig. 2. Numerical integration of equation (24a) with only 
six dx increments gives a value of Q' = 1972 Btu/ft2 sec rather 
than the Q' = 0.76 Btu/ft2 sec computed by Mr. Stephenson. 

Recent measurements, performed by Dr. D. R. Whitney of 
General Motors Research Laboratory, of the average fluid film 
temperature within the contact zone agree well with our calcu-
lated values. If anything, the experimental results are on the 
high side. (The technique is based on the British work of Dr. 
Crook where the product of RC is calculated from the measure-
ments of total resistance and capacitance. This procedure 
cancels out the effect of geometry and RC is proportional to tem-
perature. For an order of magnitude change in RC there is ap-
proximately 100 deg F change in temperature.) These results 
indicate that the lubricant remains virtually adiabatic and that 
little heat conduction takes place during the short contact time. 
The question of conduction deserves considerably more attention 
along both theoretical and experimental lines. In our present 
program we are concentrating on this problem. 

With reference to the question raised by Dr. Poritsky on nu-
merical analysis we used approximately 50 mesh points and the 
spacing between them was not always equal. It takes some-
where between thirty and sixty iterations for the results to con-
verge. The number of iterations increases with load and speed. 
We set the limit of accuracy to within 0.1 per cent in the total 
pressure variation between successive iterations. We expect 
that more points will be required when heat conduction and 
heavier loads are considered. 

+ — [(co. 2 * 

2(k - 1) y 
~ 4 A V ~ C ° S ( V ) R 

(cos 20, - cos 2d,) 

cos 2di) + (cos 2d3 - cos 20,)] 

k 

(cos 20,j - cos 20J 

In r-ii't 
nr, 

J ] } Pi(v)d* (28) (k + 1) (k + 1) 

The first term corresponds to the symmetric case and the last to 
antisymmetric. 
Fig. 12 that 

r Q (R, £i) where < n it is evident from 

n = 2 sin y2(?? - f ) 

r2 = 2 cos y2(77 + £) 
r% = 2 sin y2(r? + 

n = 2 cos y2(i j — O 

20! = ir + y + £ 

2 02 = v - £ 
(29) 

20, = 7T - 7) - £ 

204 = V + £ 
V 
R 

= cos £ 

ds = R dr) 

Substituting the above relations into equation (28) we obtain 
equation (15). For the case of £2 > tj (outside the load P(ri) ds) 
we obtain from Fig. 12 the following 
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(30) 

?'i = 2 sin 1 /2(f — r/) 

i'i = 2 cos y2 (£ + V) 

r, = 2 sin \/2 + 

r, = 2 cos •/,(£ - »?) 

cos 20i — cos 202 = —2 cos t) cos i 

cos 20j — cos 2di = — 2 cos cos J 

Substituting these relations into equation (28) we obtain the 
same form exactly as equation (15). Thus this equation is valid 
inside and outside the pressure region. 

(3) The derivation of equation (15) is based on a direct ap-
plication of the Cauchy Integrals to the first fundamental prob-
lem of elasticity for the case of a circle. Naturally, complex 
representation was employed in formulating this boundary-value 
problem. Other techniques may be used in deriving the above 

results, such as conformal mapping, infinite series, etc. How-
ever, it is doubtful if a conformal mapping of the half space 
problem with a concentrated load at the free surface to a semi-
infinite strip will be of any use to this problem. 

(4) We question the basis for the statement, "A method which 
lends itself to greater accuracy is described in Poritsky's reference 
[8]. . . . ," since equation (15) can be solved analytically. On the 
other hand if numerical method is employed to ease the computa-
tion it should be no less accurate than the numerical method used 
to compute the deformation due to the "tails" of the pressure 
profile used in Ref. [8]. 

(5) The linear term can be added quite readily to the compu-
tations of film thickness but thus far we did not find it necessary. 
We might add that other investigators which have studied the 
elasto-hyclrodynamic problem under isothermal conditions have 
not added it either. 

We wish to thank once again the discussers for the interest they 
have shown in studying our paper. 
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