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grooved bearing which would then be a function only of the Som-
merfeld number (for a given a//3). The case of grooved bearings 
composed of symmetrical arcs and loaded over the center of one 
of the arcs is given in [2]. By similar methods it is possible to 
obtain solutions for ail}' arbitrary arrangement of grooves and 
loading. 

C N o n c i r c u l a r B e a r i n g s . In the case of noncircular bearings, 
such as shown in Fig. 8, the additional complication is that not 
only do ar//3 and <j> differ for each arc but also the eccentricity 
ratio e. Thus for any fixed position of the journal, each arc will 
have different a//3, e, and </> values. Aside from the thus greatly 
increased number of operations, the procedure of calculation is 
the same as for circular bearings. This consists of the following 
steps: 

(a) Fix the journal at a given eccentricit}' and attitude angle 
with respect to the geometric center of the full bearing. 

(b) Calculate the resulting e and (a + 4>) values for each in-
dividual lobe. 

(c) Obtain from the appropriate table the values of S, 4>, §in, 
and qc corresponding to a given e and (a + <f>). This may involve 
interpolation and crossplotting of the presented data. 

(d) Add vectorially all values of S. This will yield a resultant 
1/S and a resultant a (as well as 4>) for the full bearing. 

(e) Add algebraically the values of qm which will yield the 
lubricant flow; and the values of qz to yield the side leakage. 
This procedure of first fixing the shaft position and then finding 
the corresponding load and load angle is, of course, the inverse of 
the practical problem in which usually the loading is known 
and the quantity to be established is the locus of the journal. 
However, once a general relationship between S, a/P, and the 
journal locus is established, it is then easy to revert to the 
practical procedure of determining eccentricity and flow for a 
given set of operating conditions. 
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D I S C U S S I O N 

W . A. Gross3 

Mr. Pinkus has performed a valuable service by publishing 
computed characteristics of finite partial journal bearings for in-
compressible films with only positive pressures. His results ap-
proximate liquid film behavior with vaporization. It would also 
be valuable to tabulate, for these bearings, the properties which 
include the effects of subambient pressure. These properties are 
applicable to both gas and liquid film bearings at low bearing 
numbers. 

The Giimbel-type boundary conditions (in which subambient 
pressures in an incompressible film are ignored) were apparently 
used for simplicity, anticipating the probable accuracy for de-
scribing liquid film characteristics. Does the author have solu-
tions for which Swift-Stieber boundary conditions (in which the 
pressure gradient is presumed to vanish where the pressure falls 
to ambient) apply? Such results would be valuable for estimating 
the validity of the Giimbel boundary condition assumption. 

Additional information is desirable for assessing the accuracy 
of the results for application to actual bearings. Although we 
accept the validity of the Re3'nolds differential equation, we do 
need to know the accuracy with which the Remolds difference 

3 Member of Research Staff, Applied Mechanics, I B M Research 
Laboratory, San Jose, Calif. M e m . A S M E . 
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equation for the grid used approximates the Reynolds differential 
equation. Finally, we need to know the accuracy with which the 
difference equations have been solved. Practically, this means 
that both the grid size and, in the absence of a matrix solution, 
that the convergence indicator be appropriately chosen. 

A stable iteration scheme will yield solutions which approach 
asymptotically the correct value. The appropriate convergence 
indicator for a chosen accuracy may then be established. A grid 
size appropriate for the specified accuracy may be chosen by com-
paring solutions for two or more similar grid sizes as shown by 
the discusser.4 The author's evaluation of these two effects 
would add significantly to the value of the paper. 

Since the difference equation used is that described by reference 
[5], the author apparently still prefers to approximate film thick-
ness gradients rather than expressing them precisely. Since the 
film thickness is prescribed by the assumed eccentricity ratio and 
attitude angle, the gradients at grid points may be specified 
exactly. They may therefore be computed once-for-all before 
beginning the iteration. A routine such as the author uses may 
be preferable for handling irregular films, and a separate sub-
routine can be set up for such cases. One runs the risk, however, 
of encouraging computational instability by using this latter 
method. In fact, it is probably better to ajiproximate an irregular 
film thickness by an analytic function. This function and its 
gradients can then be precisely specified for each grid point. 

Author 's Closure 
Dr. Gross's discussion is most welcome as it provides an op-

portunity to clarify, among others, the problem of boundary 
conditions. The author has not used in this paper, nor in any of 
his other papers, the Gtimbel boundary conditions. These con-
ditions are shown in Fig. 9 as curve 1. The author has used in 
the present paper, as he has consistently done in the past, the 
boundary conditions 

at the trailing end of the fluid film, as shown by curve 2 of the 
figure. This differs from the experimentally observed shape 
of the pressure wave only in so far as it eliminates the sub-
atmospheric loop as shown by the dashed line of Fig. 9. This 
subatmospheric loop is of significance in the solution of gas bear-
ing problems; it is of negligible importance in practically all 
cases dealing with liquid lubricants. The manner in which con-
ditions (6) have been satisfied in the numerical solution of the 
Reynolds equation is given in Ref. [5] of the paper. 

There is no direct way of evaluating the accuracy with which 
the finite difference results approximate the correct solution. An 
analytical solution of the Reynolds equation would first be 
needed, but such solutions have not, as yet, been obtained. One 

4 Fig, 2.1, "Numerical Analysis of Gas Lubricating Fi lms, " First 
International Symposium on Gas Lubricated Bearings, Washington. 
D . C., October, 1959, U. S. Govt . Printing Office. 

waj' to check the degree of accuracy would perhaps be to use the 
case of an infinitely long bearing for winch an analytical solution 
does exist. However, this computed accuracy will certainly not 
be valid for the case of finite bearings. The accuracies involved 
will also vary with such items as eccentricity, length of arc, load 
angle, etc. It is thus difficult to talk about a single degree of 
accuracy. A knowledge of the over-all range of accuracies in-
volved would certainly be of interest. 

The paper does give the grid size used as well as the convergence 
indicator; the grid is given as varying from 50 to 200 points de-
pending on length of arc and L/D ratio and the convergence used 
for the integrated pressure field is 0.004. Actually the total 
resultant force obtained from integrating the pressure field can be 
made to approach the same accuracy even though the grids may 
vary in density. This can be accomplished in either of two ways: 
Additional pressure points, on a linear scale or graphically, can be 
inserted between the known pressure values and ordinary step 
integration used; or trapezoidal summation can be used. A 
7 x 7 grid integrated trapezoidally yields the same resultant force 
as a 14 X 14 field using step integration, with a saving of 75 per 
cent of computer time. Useful information about the relations 
between grid size, convergence, time, and computer cost are given 
in Ref. [3] of the paper. 

Dr. Gross correctly points out that there was no need for using a 
finite difference expression for the film thickness. Considerately, 
he also provides an answer to his question and that is that the 
finite difference form used here is more universal by embracing 
also discontinuous and irregular film shapes. The author would 
not endorse the recommendation of approximating such irregular 
films by some analytical expression. While this seems to be a 
permissible procedure in thrust bearings, journal bearings depend 
strongly on the exact shape of the fluid film. 

Fig. 9 Boundary conditions for the solution of the Reynolds equation 
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