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= 3C[ —f(0)Fi(x, t, 3C) - J0™ F,f'(x')dx']t etc.. . [64] 

/s = - 3 C 
r = n 
£ /r(0)Pr+i(x, t, 3C) + J 0 " + 

[65] 

Evaluation ojIi. The third integral also can be expressed simply 
in terms of the F-functions. Thus 

= "3Cfo F-i(x, t - r, 3C)4>{r)dT. 

Or, with the use of Equation [51], one obtains 

= K f T T <t>^dT = - 3 C f J 0 ot Jo or 

= X 0 [ ' —Fi<t>(r) + 3C f o l F^'(r)dr 

_ 3C f'dF 
K J o 2)7-

SJ" 
t J o 

= ae/<yz, t, 3 0 0 ( 0 ) — 

[66] 

.[67] 

• [68] 

[69] 

3C 
= 3C[F^(0) + - F30'(O)] + 

K K 
F3 4>"(T)dT [70] 

The general result is 

•A 6r( 0) 3C r( 
/ . = 3C V F2r+i(x,<,3C) ^ 

^ 0 K K J o 
. . . . [ 7 1 ] 

DETERMINATION OF THE TEMPERATURE CO-EFFICIENTS 

The final result for T(x, t) is, exclusive of error terms 

1 
T(x, t) 

-3C £ / ' (0 ) 3C) + 3C E ^ P 2 r+l (x , 3C). [72] 
r = 0 r = 0 

The derivatives appearing in Equation [72] can be expressed in 
terms of finite differences.7 If, at time zero, the space distribution 
of temperature can be expressed by a second-degree polynomial in 
x, and the ambient temperature as a linear function of t, the 
following expressions apply to the various derivatives 

/°(0) = ? o + [73] 

f ' (0 ) = (4T, - 3T 0 + - T2)(Ax)~> [74] 

/2 (0) = ( r 0 + - 22', + T2)(Ax)~> [75] 

0°(O) = TV+O) [76] 

0>(0) = {Ta(At - 0) - T ^ + OjJCA/)-' [77] 

These expressions are used in this paper, although the result con-
tained in Equation [72] applies to polynomials of arbitrarily high 
degree. 

When the finite-difference Expressions [73-77] are substituted 
into Equation [72], the coefficients of the various equally spaced 
tefnperatures can be .assembled. For the case where t = Al and 
x = j(Ax) these coefficients are given in Equations [28-32] of the 

7 "Numerica l Calculus ," by W . E. Milne, Princeton University 
Press, Princeton, N . J., 1949. 

text. In presenting these coefficients, it is convenient to use the 
dimensionless sequence of functions defined by 

Fn* = FJ{ Ax)" [78] 

Discussion 
G. M. DUSINBERRE.8 The author's analysis is to be com-

pared on the one hand with suggested techniques which require 
the use of complicated formulas at all (joints in the s3'stem, and on 
the other hand with proposals which offer only a minor improve-
ment for considerable extra work. In removing an awkward re-
striction at the boundary points which are usually in a minority, 
and this at a negligible cost in complication, the present paper is a 
valuable contribution to the calculation of the large systems which 
are of real practical importance. 

A useful addition to the paper would be tables of coefficients for 
moduli 4 and 6, for two and three-dimensional systems. 

C. M. FOWLER.9 The author has made a useful contribution to 
the field of numerical analysis. Many of us are familiar with the 
difficulty he has surmounted, that of rapidly changing tempera-
tures near a boundary. Further, it seems likely that the approach 
he has employed is capable of extension to other linear systems 
—vibrations resulting from sudden loading, for example. 

It occurred to this reviewer that the author's boundary treat-
ment might also be applied with advantage to nonlinear heat con-
duction. There is no rigorous justification for such an extension, 
of course, since the superposition principle is not valid for such 
systems. Nevertheless, as the following example shows, real gains 
are obtained using his boundary treatment instead of the con-
ventional treatment, even though the system is nonlinear. 

In this example, some boundary temperatures are calculated 
using both the author's and the more conventional treatment of 
the boundary. The author numbers these formulas [26] and 
[39] in his paper. The calculations are then compared to the dif-
ferential-equation solution. 

After a few attempts, a simple solution to the nonlinear con-
duction equation was found in which the thermal conductivity 
varied inversely as the square root of the temperature. 

With the short nomenclature table below, it is easily verified 
that the conduction equation reduces to Equation [79], and that 
a sirrjple solution is given by Equation [80]. 

Nomenclature 
k(T) = aT~1/', thermal conductivity 

c 
P 
a 

h(T) 

T a 

b, d 

const, heat capacity 
const, density 
2a/cp, constant 
HT~heat-ti •ansfer coefficient 
ambient temperature 
arbitrary integration constants 

57' 
dl dx2 

i-9] 

T(x, t) = OaV + d)*/(x + by. • [SO] 

Upon differentiating Equation [80], it is found that the 
boundary condition for simple convective cooling (Elrod's Equa-
tion [25]) is satisfied, provided the heat-transfer coefficient varies 
directly with k{T), and that the ambient temperature is given by 

Ta{1) = 9a 2 « + d)2(l -I- 4k/bh)/b* [81] 

8 Professor of Mechanical Engineering, The Pennsylvania State 
University, University Park, Pa. Fellow A S M E . 

8 Physics Department , Kansas State College, Manhattan, Ivans. 
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Numerical values selected for this study were: a = 1.6, / / = 
3.2, C = 0.1, p = 8, 6 = 1, d = 1. The differential equation solu-
tion is then given by Equation [82] while initial and boundary 
conditions are given by [83] and [84]. These last' two equations 
furnish the data for the numerical computations 

T(x, I) = 144(< + l ) V ( z + 1)*. 

T{x, 0) = 144/(x + 1)< 

[82] 

[83] 

(fr~)o ~ \ ~ T̂  Ti = 432 (< + 1)2' ' ' 'lM] 
In both numerical treatments of the boundary, Ax was taken 

as 0.2, and thermal conductivities were evaluated at the average 
temperature between x = 0 and x = 0.2. Nusselt numbers were 
calculated with these conductivities, but with heat-transfer co-
efficients evaluated at x = 0. A time interval At — 0.05 was 
chosen for the conventional treatment, thus fixing the modulus, 
which incidentally satisfied Dusinberre's stability criteria. In 
Elrod's treatment, the modulus M was set at 2.00, to take ad-
vantage of his Table 2. This choice established the time intervals. 
The quantities An to Eo necessary in applying Elrod's method 
were obtained by interpolation with the appropriate Nusselt num-
ber from this table. 

The results of all these calculations are presented in the follow-
ing table: 

Time 
0 
0.05 

0 .10 
0.10! 

TA/X 
432.0 
476.3 

522.7 

0 0.2 0. 
144.0 69.4 37. 
158 8 70.6 

(155.9)C (75.5)C 
174.2 

(170.0)C 
175.3 

(177.4)E 
( ) C . . . . Conventional 
( )E Elrod 

The single calculation using Elrod's method yielded a tempera-
ture of 177.4 deg at a time of 0.103. This compares favorably 
with the analytical value of 175.3 deg. 

Three iterations, including one interior calculation, were neces-
sary to obtain the temperature by conventional methods at ap-
proximately the same time. Thus at. a time of 0.100, a tempera-
ture of 170.0 deg was obtained. This is to be compared with the 
analytical value of 174.2 deg. 

The problem analyzed is admittedly rather ridiculous, a situa-
tion brought about by the necessity of having an analytical solu-
tion for comparison, but it does offer a rather severe test. The 
ambient temperatures selected furnish relatively large discon-
tinuities at the boundary. Further, the thermal conductivity 
varies quite markedly from the boundary to the first interior 
point. Finally, the solution, which diverges to infinity with time, 
changes rapidly at the boundary. The author's treatment still 
appears to yield usable results. 

A U T H O R ' S CLOSURE 

The author appreciates the comments of Professor Dusinberre 
and the ingenious illustration of a nonlinear application furnished 
by Professor Fowler. He would like to add here in closure a 
formula to which Equation [26] reduces when the internal tem-
perature distribution is linear and the ambient temperature is 
constant 

T{0, At) = NF,*Ta + {1 

where 
OV + 1 )F,*}T0* + Fi*T, 

h'l 
erfc N_\ 

VM) 

Although somewhat less accurate than Equation [26], it can be 
readily used where tables are not available. The formula is 
stable for all Ar when M > 2 and is a suitable substitute for 
Equation [39]. 
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