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friction losses. These losses, which are not considered in Lang-
haar's analysis, affect the over-all pressure drop appreciably 
when the tubes are so short that the total pressure drop between 
the reservoirs is of the order of one velocity head. Since the 
test data at (x/DHeD ) less than 4 X 10 ~3 were obtained in 
tubes having square-edged entrances and aspect ratios L/D of 
0.45, the experimentally measured pressure losses are larger 
than those predicted by Langhaar's analysis. The geometry of 
these short tubes actually approaches that of an orifice for 
which the flow rate can be related by Torricelli's equation in the 
form 

The orifice coefficient C for the capillary tubes with an L/D 
ratio of 0.45 was found to be 0.76 ± 0.03 in the Reynolds-
number range Re f l between 100 and 800. This result is in 
agreement with data obtained by Zucrow (12) in the same 
Reynolds-number range with benzol flowing through square-
edged jets having an aspect ratio L/D of 0.33. 

The experimental results obtained in the range of large values 
of (x/Z)ReD ) approach those predicted from the Poiseuille 
laminar-flow theory for a parabolic velocity distribution at 
values of (x/D~ReD) equal to 0.3. 

CONCLUSIONS 

From an experimental study of the flow characteristics of short 
capillary tubes the following conclusions can be drawn: 

1 Measured values of the pressure drop between reservoirs 
upstream and downstream of capillary tubes with square-edged 
entrances are in agreement with Langhaar's theory for (L/D~ReD) 
larger than 4 X 10"3 and (L/D) larger than 2. 

2 Measured values of the reservoir pressure drop for tubes 
having an aspect ratio L/D equal to 0.45 are considerably larger 
than those predicted by Langhaar's theory, but can be correlated 
by the usual orifice equation. The orifice coefficient for the range 
of Reynolds numbers Re D between 100 and 800 was found to be 
0.76 ± 0 . 0 3 . 

3 By proper selection of length-to-diameter ratios of short 
capillary tubes it is possible to simulate various flow character-
istics in small-scale models for tests in atmospheric wind tunnels 
or in pneumatic control devices. 
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Discussion 
M. A. RIVAS, Jb.e The experimental data presented in the 

paper are quite valuable clue, in particular, to the care taken by 
the authors in their experiments. However, the writer takes ex-
ception to the lack of emphasis on what constitutes the governing 
design parameter for laminar flow in tubes (or capillaries). As 
has been shown by theoretical and experimental investigations 
(the authors' references (1), (3), (4), (5), and reference6 of this 
discussion), the sole parameter which governs the flow is L/D/ReD 

or Re^/Re^,2. 
In particular, the writer is disturbed by the correlation pre-

sented in Fig. 3 of the paper where the exponent- N in equation [5] 

Q = const. APV [5] 

is depicted as a function of L/D alone. It will be shown that it is 
legitimate to write an expression as given by Equation [5], but 
that iV, however, in this expression is a function of L/D/~ReD and 
not of L/D. 

It is easily shown (e.g., from Equations [8] and [9]) that the 
total pressure drop between the two reservoirs (assuming that, as 
the fluid enters the tube, it forms a stream tube having the shape 
of a bellmouth—for a detailed discussion of flow on bellmouth 
entries (see reference7 of this discussion) is given by 

AP = ( l + 4/app j^J | p F 2 [11] 

A P = ( \ + 4 / A P P } P ( ~ ) 2 U L « ] 

transposing 

V ( p / 2 ) V d + 4/APP.r/O) 

For laminar flow in tubes (see Figs. 4 and 5 in reference6 or Fig. 5 
of the paper), 

(a) If (x/D)/~ReB is very small CIO"5 

then 

4/APP ^ « < i 

and therefore, from Equation [12] 

6 First Lieutenant, USAF, Directorate of Research, Fluid Dynamics 
Research Branch, Aeronautical Research Laboratory, Wright Air 
Development Center, Air Research and Development Command, 
Wright-Patterson Air Force Base, Ohio. Assoc. Mem. ASME. 

6 "Friction Factor in the Laminar Entry Region of a Smooth 
Tube," by A. H. Shapiro, Robert Siegel, and S. J. Kline, Proceedings 
of the Second U. S. National Congress of Applied Mechanics, June, 
1954, pp. 733-741. 

7 "On the Theory of Discharge Coefficients for Rounded-Entrance 
Flowmeters and Venturies," by M. A. Rivas, Jr. and A. H. Shapiro, 
Trans. ASME, vol. 78, 1956, pp. 489-498. 
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THEORETICAL EXPONENT N 
1.0 N 'N Q = C AP 

WHERE Q • VOLUMETRIC FLOW RATE 
C • CONSTANT 
A ? • RESERVOIR PRESSURE 

D I FFERENCE 

AS A FUNCTION OF 

/ 

L L/D • 16.0 
f° 

Q ~ A P V ! ; N = 1/2 

The same result is obtained if 4/APP(S/-D) is constant. 
(6) If (x/D)/ReD is high >0.5 

then 

4/APP — > 1 

and therefore, from Equation [12] 

AP 

y ( 4 / A P P f ) 

F I G . 6 

1 + i ~ W [13] 

x I 1 y 
1 + 4/APP — ~ ( — ) [13a] 

Substituting Expression [13a] into [12] 

A P / 2 

f i ] 

but since, in this range 

64 — 
x D 1 1 

4 / \ p p — = ^ ^ — 
• D Rec V Q 

1/2 

we then have 

AP 
1 

or Q ~ AP; N = 1 

(c) If 10~s < — /ReD < 0.5 

A P ' 

V( 
but since 

1 + 4/APP — 

(a; > 

î / 
also 

1 + 4/APP - = ^ X R E V 

In particular we could define an exponent n such that 

Q ~ AP ! - " / 2 = AP'V. 

where 

Ar = 
1/2 

1 — m/2 

[15] 

[16] 

The exponent n can be calculated readily from the curve given in 
Fig. 5 of the authors' paper; however, the curve in Fig. 5 in 
reference6 has been used instead, since it is in a form that yields a 
greater accuracy. Having calculated n, Ar is readily computed 
from Equation [16]. The results of these calculations are pre-
sented in Fig. 6. 

The apparently successful correlation given by the authors in 
their Fig. 3 is explained as follows: If, from the authors' Table 2 
and from their Fig. 3, we construct Table 3 and plot these data on 
Fig. 0 in the manner shown, where each solid horizontal line repre-
sents for each L/D the range of (L/D)/~ReD at its corresponding 
Ar-value, and each circle represents the mean value of the (L /D) / -
ReB range, we can see how the authors were able to arrive at the 
smooth correlation shown in their Fig. 3. Therefore, it was quite 

T A B L E 3 
L/D —Range of L/D/Reo— > N 
0.45 2. 76 X 10 " ' 5 .60 X i o - » 0.52 
2.08 2. .1 x 10-2 3.62 X 10 " ' 0.58 
2.85 2. .52 x 10-2 1.1 X 10 - ! 0.62 
4 .0 2 .27 X 10 2.38 X 10-1 0.64 
4 .4 1. .31 X i o - i 2 .2 X 10-"- 0.68 
8 .0 1 .63 X i o - i 5.47 X 10-2 0.76 

16.0 4 .25 X i o - i 5 .8 X 10-2 0.87 
17.25 2. .25 1.1 X 10-1 0.91 

D
ow

nloaded from
 http://asm

edc.silverchair.com
/fluidsengineering/article-pdf/79/5/1074/6844755/1074_1.pdf by guest on 19 April 2024



1076 T R A N S A C T I O N S O F T H E A S M E 

fortuitous that the authors chose such an (L/D)/~ReD range for 
each of their L/D's, and had they extended the range of (L/D ) / -
R e c extensively for any of the L/D's chosen they would have ob-
served a variation in the value of N for each value of the L/D's 
used. 

One concludes from the foregoing that, although it is per-
missible to write an expression as given by Equation [5] of the 
paper, N in this expression must be regarded as a function only of 
(L/D) /Re f l , the important sole parameter which governs the flow 
in tubes. 

In regard to the deviations from tube-flow theory observed for 
low values of L/D, (L/D = 0.45), the writer agrees with the 
authors that this is the result of a vena-contraeta effect due to the 
sharp-edged entrance. This effect undoubtedly exists just as well 
in sharp-edge-entry tubes with the larger L/D's, but the effects 
become obscured by the wall-friction losses being of a much 
larger magnitude for tubes with larger L/D's. It is suggested 
that a systematic investigation, in which ( L / D ) / R e B is kept con-
stant and L/D (in this low-value range) is varied, would be ex-
tremely valuable. The present state of the art does not provide 
the designer with the criterion to distinguish at what values of 
L/D, for a particular (L/D)/ReD range, deviations from tube-flow 
theory should be expected for tubes with sharp-edged entries. 

A. H. SHAPIRO,8 It is essential to the unambiguous interpreta-
tion of the experimental results given in this paper to appreciate 
that they refer to a capillar}' tube into which the flow is introduced 
from a large space via a square-edged orifice. Consequently the 
pressure drop depends both on the flow in the orifice and the flow 
in the capillary. Viewed in this light, the experimental results 
are less likely to be applied to circumstances in which they are not 
valid. 

For example, it is true that the single dimensionless parameter, 
x/DReD, governs the entire flow when the flow at the entrance of 
the capillary is uniform, and that it thus controls the dimension-
less pressure drop in the capillary, 2Ap/pV2 , for such a uniform 
entry. But, for a given orifice geometry, the governing number 
for the orifice is simply ReD , and the latter controls the dimension-
less pressure drop as the flow accelerates into the orifice. Further-
more, Re D controls the character of the flow entering the capillar}', 
and thereby the pressure drop in the latter. From all this we are 
forced to conclude that the dimensionless pressure drop for the 
entire system depends on two dimensionless groups, say 

Ap ( x x \ 

T ^ ' U w d )
 il7] 

2 P 

rather than on x/DReD alone. 
Accordingly, Fig. 5 of the paper must be used with some 

caution, for a more extensive series of tests, perhaps with less 
scatter, would surely reveal on this chart a series of curves, one 
for each value of x/D. The authors obtained what seems to be a 
single curve only because of the experimental circumstance that 
an increase in x/D was accompanied by a general increase in the 
experimental values of x/DRejj . 

This point may be elucidated by considering two extremes. If 
x/D is very small, say less than 0.10, the effect of x/D itself 
vanishes, the system behaves like a sharp-edged orifice, and 
2Ap/pV2 depends only on R e c . Thus, if several orifices with very 
small (but different) values of x/D were tested, each would yield 
a different curve on the chart of 2Ap/pV2 versus x/(DReD), but 

8 Professor of Mechanical Engineering, Massachusetts Institute of 
Technology, Cambridge, Mass.; presently, Visiting Professor of Ap-
plied Thermodynamics, Engineering Laboratory, University of 
Cambridge, Cambridge, England. Mem. ASME. 

all would yield the same curve on a chart of 2Ap/pV 1 versus Re f l . 
At the other extreme, consider large values of x/D, say always 

greater than 100. Then the nature of the inlet is relatively in-
consequential, and all the experimental data may be expected to 
be in agreement with Langhaar's theory, even for very low values 
of x/DReD. 

The foregoing discussion suggests that it would be of interest to 
carry out further systematic experiments with the goal of estab-
lishing the individual curves of x/D in Fig. 5. 

To the authors' account of theoretical and experimental work on 
laminar flow in tube entries, it might be added that in reference (6) 
several additional theories are presented. One in particular, 
based on the theory of thin, laminar boundary layers, is especially 
accurate for very small values of x/(DHeD), where Langhaar's 
theory seems to be in error. 

The best experimental data for short tubes are those of refer-
ence (6), also given in reference (8). They are in remarkable 
agreement with the theories, differing from the latter by less 
than 1 per cent in the range of x/(D~ReD) between 10~5 and 
1 0 "

3

. 

J. F. D. SMITH.9 The authors of this paper have been loose in 
their dimensional treatment of the subject. The units specified 
are quite inconsistent and awkward. For example, in Equation 
[1] the authors divide a pressure drop in pounds (force) per square 
inch by a mass density in pounds (mass) per cubic foot. In the 
same equation V is given as a velocity in feet per second. The 
part in parentheses (V2/2) is raised to a variable power k, which 
means that the friction coefficient has dimensions in this case 
which vary with k. 

The writer would suggest that the authors revamp the units 
and equations to insure dimensional consistency and rigor. For 
example, any factor raised to a variable power, as in this equa-
tion, must be dimensionless if no other dimensions are changed 
elsewhere. 

This is not to be construed as a criticism of the results, but is a 
plea for a more satisfactory and rigorous mathematical presenta-
tion. 

J. R. SPROAT.10 A paper was presented at the Appalachian 
Gas Measurement Short Course held at West Virginia University 
in August, 1955. Simple working formulas were developed by the 
writer for determining the dimensions of capillary tubes required 
to produce desired flow rates for gases and liquids. The conclud-
ing remarks of that paper may be of interest to those contemplat-
ing further investigations or use of capillaries: 

"In the design of a capillary, the Reynolds number should be 
calculated to determine if the flow is laminar. If the Re f l is 
found too high, using the available diameter tube, it may be 
necessary to divide the flow, say in 10 parallel tubes. 

"Roughness of the bore has no effect on the flow rate, because 
there is no flow at the wall of the tube. 

"The capillary should be calibrated with dry air or a known 
gas such as nitrogen; boiled or distilled water. After calibra-
tion the capillary can be used on any other fluid if its viscosity is 
known. The flow will vary inversely as the viscosity; i.e., as the 
viscosity increases the flow decreases. Calibration is necessary 
due to the fact that the flow varies as the fourth power of the 
diameter and it is difficult to obtain tubing with exact bore 
through the entire length of section. 

"If the capillary is to be coiled, calibration should be made 
after coiling. 

9 Dean, Division of Engineering, Iowa State College, Ames, Iowa. 
10 Measurement Engineer, Carbide and Carbon Chemicals Com-

pany, So. Charleston, W. Va. Mem. ASME. 
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"The differential pressures should range from 20 to 300 inches 
of water. 

"The length should be greater than 50 times the diameter. 
"The area preceding the inlet should be at least 20 times the 

capillary area. 
" A filter or screen should be installed upstream of the capillary. 
"The temperature affects the diameter of the capillar}' and the 

viscosity of the flowing fluid; therefore, for accurate work a tem-
perature bath or some suitable means should be provided to main-
tain uniform temperature of both capillary and fluid. 

"Since the flow varies inversely as the viscosity, once the 
capillar}' has been calibrated with a fluid of known viscosity, such 
as air, nitrogen, or water, the viscosity of any other fluid may be 
determined. Several makes of viscosimeters use this method as 
a means of calculating viscosity. 

"The capillary has many uses as a measuring device, especially 
for a small quantity of gas or liquid. They are accurate, inex-
pensive, and simple to construct." 

A U T H O R S ' C L O S U R E 

The authors wish to thank the discussers for their interest, in 
the paper. Some of the comments are pertinent and valuable 
and the authors will attempt to answer, as far as possible, the 
questions raised. 

Lieutenant Rivas' comments represent a valuable contribu-
tion to the paper, but unless the assumptions made in the course 
of his analytical derivation of the flow exponent N are under-
stood clearly, the application of his results could lead to erroneous 
conclusions. His assertion that the flow exponent AT depends 
solely on the parameter (L/D)/HeD is not entirely true. As 
pointed out explicitly in the paper as well as in Professor Shapiro's 
discussion, and implicitly also in the last paragraphs of Lieut. 
Rivas' discussion, the pressure drop in flow through short capil-
lary tubes into which the flow is introduced from a large space 
via a square-edged orifice depends on L/D as well as Re f l , or 
[(L/D)/ReB]. Fig. 3 is an empirical correlation and therefore 
applies only within the range of the variables investigated. Its 
primary purpose is to show that by selecting appropriate values 
of L/D, flow exponents ranging from about 0.5 to 1.0 can be 
attained. The actual value of L/D required to obtain a specific 
value of N for a specified, but limited, range of Reynolds numbers 
ReB depends also on the Reynolds-number range. 

Lieut. Rivas' analysis can be used to predict N when Ai p in 
Equation [7] of the paper is sufficiently small compared to (A2 p 
+ A3 p) SO that deviations of the actual value of Ai p from the 
assumed value of one velocity head are negligible. However, for 
small values of L/D, irrespective of the value of (L/D)/Rec, the 
theoretical curve shown in Fig. 6 does not apply because vena-
contracta effects which are not considered in the analysis become 
important. 

To elucidate this point and to illustrate the vena-contracta 
effects at- least qualitatively, Fig. 7, based on Fig. 5 and Equa-
tion [16], has been prepared. In this figure curves of N, calcu-
lated on the assumption that A, p = pV2/2yc, are shown as a 
function of L/D. Each curve is for a given value of ReD . The 
crosses represent the experimental values of Ar from Fig. 3 and 
the accompanying vertical lines show the range of Reynolds 
numbers covered in the tests (see Table 2). The circles repre-
sent values of N calculated from experimental data reported 
by Linden and Othmer11 for aspect ratios of 0.20, 0.30, and 0.58 in 
the Reynolds-number range indicated by the accompanying ver-
tical lines. 

An examination of Fig. 7 shows that N depends both on L/D 

11 "Air Flow Through Small Orifices in the Viscous Region," by H. 
R. Linden and D. F. Othmer, Trans. ASME, vol. 71, 1949, pp. 765-
.277 

F I G . 7 T H E O R E T I C A L A N D E X P E R I M E N T A L F L O W E X P O N E N T N 
V E R S U S L E N G T H TO D I A M E T E R R A T I O FOR V A R I O U S R E Y N O L D S 

N U M B E R S 

and Re B or (L/D)Refl. The observed values of N represent 
average values for a specific length-to-diameter ratio over a 
limited Reynolds-number range. The experimental values agree 
fairly well with the predicted values for L/D > 2. Fig. 7 fur-
ther shows, as pointed out by Lieut. Rivas, that if a much wider 
range of Reynolds numbers had been covered with any of the test, 
sections, the relation between Ap and Q could not have been 
approximated by a single straight line. It is also apparent that 
for small values of L/D the experimental results deviate appre-
ciably from the values predicted by Lieut. Rivas' analysis. For 
very small values of L/D the data of Linden and Othmer yield 
values of N below 0.5 which is the lower limit of the analysis. 
For the purpose of relating Ap to Q empirically, it would therefore 
appear acceptable, and maybe even preferable, to treat N, the 
flow exponent for the system investigated, as a function of L/D 
within a limited, but specified, range of Reynolds numbers rather 
than to treat Ar solely as a function of (L/D)/~ReD as suggested 
by Lieut. Rivas. 

It should also be noted that in Fig. 5 of footnote 6 which was 
used by Lieut. Rivas for his calculations, no experimental data 
for (L/£>) /ReD above 1 X 10~3 are shown. In the range of 
(L/D)/ReD between 1 X 10"3 and 5 X 10" ' in which the bound-
ary-layer flow gradually merges into fully developed Poiseuille 
flow and the variation of N takes place, the results of the various 
theories shown differ by as much as 10 per cent from one another. 

In an effort to determine which of the theories is valid in the 
range of the experimental results of this investigation, the ex-
perimental data are compared in Fig. 8 of this closure, with the 
analytical results summarized by Shapiro, et al.,6 which was 
published after this paper was submitted. The solid line repre-
sents the average of the results of this investigation for tests 
with (L/D) > 4. As predicted by Shapiro, et al.,6 the ex-
perimental results agree in the range of (L/D)/~ReD between 
5 X 10 ~3 and 5 X 1 0 m o r e closely with results obtained by 
differential-equation methods (1 and 5) than with results calcu-
lated by integral methods. 

Professor Shapiro's comments emphasize succinctly the im-
portance of the entrance conditions. In an effort to shed more 
light on the pressure drop, the authors reviewed available data, 
including those for very small values of L/D where conditions 
approach flow through a sharp-edged orifice.12 

An incidental observation made in the course of this study is 
that orifice coefficient in the laminar-flow range may be affected 

12 "Orifice Coefficients for Reynolds Numbers From 4 to 50,000," 
by H. W. Iverscn, Trans. ASME, vol. 7S, 1956, pp. 359-364. 
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by L/D variations even when L/D is of the order of 0.1. The 
ISA and ASME codes specif}' the maximum thickness of orifice 
plates, t, as a fraction of the pipe diameter, Dp; i.e., t < 0.02 Dp. 
For a small orifice in a large pipe it is therefore quite possible that 
the pressure drop through the orifice, although designed accord-
ing to specifications, will deviate from the results predicted from 
a simple orifice equation (e.g., footnote 8). To safeguard against 
such deviations it is suggested that the maximum orifice thickness 
be specified in terms of the orifice diameter. 

The information available to date is unfortunately insufficient 
to give quantitative answers to the questions raised by Pro-
fessor Shapiro's valuable and pertinent comments which, how-
ever, are broader in scope than the limited objectives for which 
the tests reported in this paper were conducted. Qualitatively, 
we can conclude that only for conditions when Ai p in Equation 
[7] is of the order of ( A 2 p + A3 p) will deviations from the pres-
sure drop predicted from Equation [!)] and Fig. 5 be appreciable. 

The authors agree with Lieut. Rivas and Professor Shapiro 
that additional experiments, especially at Reynolds numbers be-
tween 500 and 2100 and in the low L/D range, are desirable. 

T R A N S A C T I O N S O F T H E A S M E 

The tests reported by the authors were conducted within the 
scope of a large research project in the course of which experi-
mental data for flow of air through capillary tubes in the pressure-
drop range of 0.03 and 2.0 in. water were required. These con-
ditions yield (L/D)/ReD values between 1 X 10~3, the maximum 
value for which data were available and 0.5, the value at which 
Poiseuille flow is approached. The data were published simply 
because they fall into a range of variables in which no experi-
mental results were heretofore available. When comparing the 
accuracy of the experimental results of this study with those of 
Shapiro, et al.,6 it is well to keep in mind that the pressure drop, 
which more than any other measurement limits the accuracy of 
the apparent friction coefficient at low Reynolds numbers, is much 
smaller in the range of variables covered by the authors than 
in the range of variables covered by Shapiro, et al. The original 
equipment was returned to the sponsor at the termination of the 
contract, but an improved version is at present being built at 
Union College to conduct further tests along the lines suggested 
by the discussers. 

Dean Smith's comments regarding the units and the dimen-
sional treatment of the subject seem to have been prompted by 
an error in the preprint of this paper, where instead of the pro-
portional sign an equal sign was used in Equation [1], Equa-
tion JLJ is dimensionally consistent as showrn and the parame-
ters Ap/(p V2/2gc) and (L/DRe D ) are dimensionless quantities. 
One could, of course, express p in slugs/ft3 instead of Ibn/ft3 and 
thereby eliminate the explicit use of gc. This choice of units 
may be more satisfactory to some, but it would not affect the 
mathematical rigor. 

Mr. Sproats comments on the application of capillary tubes to 
flow measurements will be of value to those contemplating the 
use of capillaries for this purpose. It would seem, however, 
that the minimum length should be specified in terms of (L/D)/ 
ReD instead of L/D. The experimental results of this study 
confirm theoretical predictions6 which show that for the center-
line velocity to approach the Poiseuille value within 1 per cent, 
(L/D)/Refl must be at least 0.3, but. probably close to 0.0. 
With the lower figure as a limit, the minimum lengtli-to-diameter 
ratio required to establish a parabolic velocity profile at ReB 

of 2000 is 600, which is twelve times larger than the value sug-
gested by Mr. Sproats. 
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