Abstract

This present study analyzes the Reynolds stress anisotropy in the nonuniform sediment beds under the condition of no seepage and downward seepage flow. The results show the estimation of the deviation measure from the isotropic turbulence in view of Reynolds stress tensor for turbulent flow in the presence of seepage through the channel bed. The investigation presents the Lumley triangle for flow turbulence, Eigen values, and the invariant functions for the whole flow depth subjected to no seepage and seepage beds. The longitudinal profile of anisotropy tensor within the near-bed zone for seepage flow provides the higher anisotropic stream than those of no seepage flow, while the remaining (transverse and vertical) profiles of anisotropy tensor in the vicinity of bed for seepage flows provide lower anisotropic stream. The anisotropic invariant maps show the near bed anisotropy inclining to be a two-component isotropy subjected to no seepage and seepage flow. With the increase in vertical distance from bed surface that is close to the water surface, the data sets of anisotropic invariant maps for no seepage and seepage flows show a trend of one-component isotropy, while it has an affinity to develop a three-component isotropy in the vicinity of midzone of the flow depth. Invariant function data sets present a well two-component isotropy in the near bed region of flow and a quasi-three component isotropy in the outer region of flow for seepage flows as compared to no seepage flow.

References

1.
Lu
,
Y.
,
Chiew
,
Y. M.
, and
Cheng
,
N. S.
,
2008
, “
Review of Seepage Effects on Turbulent Open-Channel Flow and Sediment Entrainment
,”
J. Hydraulic Res.
,
46
(
4
), pp.
476
488
.10.3826/jhr.2008.2942
2.
Devi
,
T. B.
,
Sharma
,
A.
, and
Kumar
,
B.
,
2019
, “
Flow Characteristics in a Partly Vegetated Channel With Emergent Vegetation and Seepage
,”
Ecohydrol. Hydrobiol.
,
19
(
1
), pp.
93
108
.10.1016/j.ecohyd.2018.07.006
3.
Sharma
,
A.
,
Herrera-Granados
,
O.
, and
Kumar
,
B.
,
2019
, “
Bedload Transport and Temporal Variation of Non-Uniform Sediment in a Seepage-Affected Alluvial Channel
,”
Hydrolog. Sci. J.
,
64
(
8
), pp.
1001
1012
.10.1080/02626667.2019.1615621
4.
Kinzli
,
K. D.
,
Martinez
,
M.
,
Oad
,
R.
,
Prior
,
A.
, and
Gensler
,
D.
,
2010
, “
Using an ADCP to Determine Canal Seepage Loss in an Irrigation District
,”
Agric. Water Manage.
,
97
(
6
), pp.
801
810
.10.1016/j.agwat.2009.12.014
5.
Fipps
,
G.
,
2005
,
Potential Water Savings in Irrigated Agriculture for the Rio Grande Planning Region (Region M)
,
Texas A&M University
,
College Station, TX
(2005 Update. Texas Water Resour Inst.).
6.
Krishnamurthy
,
K.
, and
Rao
,
S.
,
1969
, “
Theory and Experiment in Canal Seepage Estimation Using Radioisotopes
,”
J. Hydrol.
,
9
(
3
), pp.
277
293
.10.1016/0022-1694(69)90022-5
7.
Sharma
,
H. D.
, and
Chawla
,
A. S.
,
1975
,
Manual of Canal Lining
,
Central Board of Irrigation and Power
,
New Delhi, India
.
8.
Raja
,
R. K.
,
Kumar
,
A.
, and
Chhabra
,
S. S.
,
1983
, “
Estimation of Seepage Losses From an Unlined Channel- A Field Study by Nuclear Techniques
,”
Proceeding, Volume II - Hydraulics, CBIP, Fiftieth Annual Research and Development Session
,
Simla, Himachala Pradesh, India
.
9.
Yussuff
,
S. M.
,
Chauhan
,
H. S.
,
Kumar
,
M.
, and
Srivastava
,
V. K.
,
1994
, “
Transient Canal Seepage to Sloping Aquifer
,”
J. Irrig. Drain. Eng.
,
120
(
1
), pp.
97
109
.10.1061/(ASCE)0733-9437(1994)120:1(97)
10.
Carlson
,
R. A.
, and
Petrich
,
C. R.
,
1999
, “
New York Canal Geologic Cross Section, Seepage Gain/Loss Data, and Ground Water Hydrographs: Compilation and Interim Findings
,” Treasure Valley Hydrologic Project Open File, New York.
11.
Berenbrock
,
C.
,
1999
, “
Streamflow Gains and Losses in the Lower
,”
US Department of the Interior
,
US Geological Survey
,
Boise River Basin, ID
, pp.
1996
97
.
12.
Martin
,
C. A.
, and
Gates
,
T. K.
,
2014
, “
Uncertainty of Canal Seepage Losses Estimated Using Flowing Water Balance With Acoustic Doppler Devices
,”
J. Hydrol.
,
517
, pp.
746
761
.10.1016/j.jhydrol.2014.05.074
13.
Shukla
,
M. K.
, and
Mishra
,
G. C.
,
1994
, “
Canal Discharge and Seepage Relationship
,”
Proceeding Sixth National Symposium on Hydro,
India, pp.
263
274
.
14.
Tanji
,
K. K.
, and
Kielen
,
N. C.
,
2002
,
Agricultural Drainage Water Management in Arid and Semi-Arid Areas
,
FAO
, Roma, Italy.
15.
ANCID
,
2006
,
Australian Irrigation Water Provider Benchmarking Data Report for 2004-2005
,
Australian National Committee on Irrigation and Drainage
,
Canberra, Australia
.
16.
Rao
,
A. R.
,
Sreenivasulu
,
G.
, and
Kumar
,
B.
,
2011
, “
Geometry of Sand Bed Channels With Seepage
,”
Geomorphology
,
128
(
3–4
), pp.
171
177
.10.1016/j.geomorph.2011.01.003
17.
Prinos
,
P.
,
1995
, “
Bed Suction Effects on Structure of Turbulent Open-Channel Flow
,”
J. Hydraulic Eng.
,
121
(
5
), pp.
404
412
.10.1061/(ASCE)0733-9429(1995)121:5(404)
18.
Lu
,
Y.
, and
Chiew
,
Y.-M.
,
2007
, “
Suction Effects on Turbulence Flows Over a Dune Bed
,”
J. Hydraulic Res.
,
45
(
5
), pp.
691
700
.10.1080/00221686.2007.9521806
19.
Bebina Devi
,
T.
,
Sharma
,
A.
, and
Kumar
,
B.
,
2016
, “
Turbulence Characteristics of Vegetated Channel With Downward Seepage
,”
ASME J. Fluids Eng.
,
138
(
12
), p. 121102.10.1115/1.4033814
20.
Devi
,
T. B.
,
Daga
,
R.
,
Mahto
,
S. K.
, and
Kumar
,
B.
,
2016
, “
Drag and Turbulent Characteristics of Mobile Bed Channel With Mixed Vegetation Densities Under Downward Seepage
,”
ASME J. Fluids Eng.
,
138
(
7
), p. 071104.10.1115/1.4032753
21.
Maclean
,
A. G.
,
1991
, “
Open Channel Velocity Profiles Over a Zone of Rapid Infiltration
,”
J. Hydraulic Res.
,
29
(
1
), pp.
15
27
.10.1080/00221689109498990
22.
Chen
,
X.
, and
Chiew
,
Y. M.
,
2004
, “
Velocity Distribution of Turbulent Open Channel Flow With Bed Suction
,”
J. Hydraulic Eng.
,
130
(
2
), pp.
140
148
.10.1061/(ASCE)0733-9429(2004)130:2(140)
23.
Sharma
,
A.
, and
Kumar
,
B.
,
2018
, “
High-Order Velocity Moments of Turbulent Boundary Layers in Seepage Affected Alluvial Channel
,”
ASME J. Fluids Eng.
,
140
(
8
), p. 081204.10.1115/1.4039253
24.
Sharma
,
A.
, and
Kumar
,
B.
,
2017
, “
Structure of Turbulence Over Non Uniform Sand Bed Channel With Downward Seepage
,”
Eur. J. Mech.-B/Fluids
,
65
, pp.
530
551
.10.1016/j.euromechflu.2017.05.006
25.
Sharma
,
A.
,
Mihailović
,
D. T.
, and
Kumar
,
B.
,
2018
, “
Randomness Representation of Turbulence in an Alluvial Channel Affected by Downward Seepage
,”
Phys. A Stat. Mech. Its Appl.
,
509
, pp.
74
85
.10.1016/j.physa.2018.06.012
26.
Sharma
,
A.
, and
Kumar
,
B.
,
2017
, “
Probability Distribution Functions of Turbulence in Seepage-Affected Alluvial Channel
,”
Fluid Dyn. Res.
,
49
(
1
), p.
015508
.10.1088/1873-7005/49/1/015508
27.
Zagni
,
A. F.
, and
Smith
,
K. V.
,
1976
, “
Channel Flow Over Permeable Beds of Graded Spheres
,”
J. Hydraulics Div.
,
102
(
2
), pp.
207
222
.10.1061/JYCEAJ.0004482
28.
Zhou
,
D.
, and
Mendoza
,
C.
,
1993
, “
Flow Through Porous Bed of Turbulent Stream
,”
J. Eng. Mech.
,
119
(
2
), pp.
365
383
.10.1061/(ASCE)0733-9399(1993)119:2(365)
29.
Sharma
,
A.
, and
Kumar
,
B.
,
2020
, “
Flow Resistance in Seepage-Affected Alluvial Channel
,”
ISH J. Hydraulic Eng.
,
26
(
2
), pp.
127
137
.10.1080/09715010.2018.1464407
30.
Sharma
,
A.
, and
Kumar
,
B.
,
2018
, “
Double Averaged Turbulence Characteristics of Alluvial Channel With Downward Seepage
,”
Can. J. Civ. Eng.
,
45
(
2
), pp.
135
151
.10.1139/cjce-2016-0581
31.
Devi
,
T. B.
,
Sharma
,
A.
, and
Kumar
,
B.
,
2017
, “
Studies on Emergent Flow Over Vegetative Channel Bed With Downward Seepage
,”
Hydrolog. Sci. J.
,
62
(
3
), pp.
408
420
.10.1080/02626667.2016.1230673
32.
Antonia
,
R. A.
,
Fulachier
,
L.
,
Krishnamoorthy
,
L. V.
,
Benabid
,
T.
, and
Anselmet
,
F.
,
1988
, “
Influence of Wall Suction on the Organized Motion in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
190
, pp.
217
240
.10.1017/S0022112088001296
33.
Krogstad
,
P. Å.
, and
Kourakine
,
A.
,
2000
, “
Some Effects of Localized Injection on the Turbulence Structure in a Boundary Layer
,”
Phys. Fluids
,
12
(
11
), pp.
2990
2999
.10.1063/1.1314338
34.
Oyewola
,
O.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
,
2004
, “
Influence of Localised Wall Suction on the Anisotropy of the Reynolds Stress Tensor in a Turbulent Boundary Layer
,”
Exp. Fluids
,
37
(
2
), pp.
187
193
.10.1007/s00348-004-0800-8
35.
Clifford
,
N. J.
,
McClatchey
,
J.
, and
French
,
J. R.
,
1991
, “
Measurements of Turbulence in the Benthic Boundary Layer Over a Gravel Bed and Comparison Between Acoustic Measurements and Predictions of the Bedload Transport of Marine Gravels
,”
Sedimentology
,
38
(
1
), pp.
161
166
.10.1111/j.1365-3091.1991.tb01863.x
36.
Nelson
,
J.
,
Shreve
,
R. L.
,
McLean
,
S. R.
, and
Drake
,
T. G.
,
1995
, “
Role of Near-Bed Turbulence Structure in Bed Load Transport and Bed Form Mechanics
,”
Water Resour. Res.
,
31
(
8
), pp.
2071
2086
.10.1029/95WR00976
37.
Lumley
,
J. L.
, and
Newman
,
G. R.
,
1977
, “
The Return to Isotropy of Homogeneous Turbulence
,”
J. Fluid Mech.
,
82
(
1
), pp.
161
178
.10.1017/S0022112077000585
38.
Shafi
,
H. S.
, and
Antonia
,
R. A.
,
1995
, “
Anisotropy of the Reynolds Stresses in Turbulent Boundary Layer on a Rough Wall
,”
Exp. Fluids
,
18
(
3
), pp.
213
215
.10.1007/BF00230269
39.
Choi
,
K. S.
, and
Lumley
,
J. L.
,
2001
, “
The Return to Isotropy of Homogeneous Turbulence
,”
J Fluid Mech
,
436
, pp.
59
84
.10.1017/S002211200100386X
40.
Willmarth
,
W. W.
,
1975
, “
Structure of Turbulence in Boundary Layers
,”
Adv. Appl. Mech.
,
15
, pp.
159
254
.10.1016/S0065-2156(08)70057-7
41.
Kline
,
S. J.
,
Reynolds
,
W. C.
,
Schraub
,
F. A.
, and
Runstadler
,
P. W.
,
1967
, “
The Structure of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
30
(
4
), pp.
741
773
.10.1017/S0022112067001740
42.
Kim
,
H. T.
,
Kline
,
S. J.
, and
Reynolds
,
W. C.
,
1971
, “
The Production Ofturbulence Near a smooth wall in a turbulent boundary layer
,”
J. Fluid Mech.
,
50
(
1
), pp.
133
160
.10.1017/S0022112071002490
43.
Bernard
,
P. S.
,
Thomas
,
J. M.
, and
Handler
,
R. A.
,
1993
, “
Vortex Dynamics and the Production of Reynolds Stress
,”
J. Fluid Mech.
,
253
(
1
), pp.
385
419
.10.1017/S0022112093001843
44.
Smalley
,
R. J.
,
Leonardi
,
S.
,
Antonia
,
R. A.
,
Djenidi
,
L.
, and
Orlandi
,
P.
,
2002
, “
Reynolds Stress Anisotropy of Turbulent Rough Wall Layers
,”
Exp. Fluids
,
33
(
1
), pp.
31
37
.10.1007/s00348-002-0466-z
45.
Murlis
,
J.
,
Tsai
,
H. M.
, and
Bradshaw
,
P.
,
1982
, “
The Structure of Turbulent Boundary Layers at Low Reynolds Numbers
,”
J. Fluid Mech.
,
122
(
1
), pp.
13
56
.10.1017/S0022112082002080
46.
Grant
,
H. L.
,
1958
, “
The Large Eddies of Turbulent Motion
,”
J. Fluid Mech.
,
4
(
02
), pp.
149
190
.10.1017/S0022112058000379
47.
Keirsbulck
,
L.
,
Labraga
,
L.
,
Mazouz
,
A.
, and
Tournier
,
C.
,
2002
, “
Influence of Surface Roughness on Anisotropy in a Turbulent Boundary Layer Flow
,”
Exp. Fluids
,
33
(
3
), pp.
497
499
.10.1007/s00348-002-0424-9
48.
Vita
,
G.
,
Hemida
,
H.
,
Andrianne
,
T.
, and
Baniotopoulos
,
C. C.
,
2018
, “
Generating Atmospheric Turbulence Using Passive Grids in an Expansion Test Section of a Wind Tunnel
,”
J. Wind Eng. Ind. Aerodyn.
,
178
, pp.
91
104
.10.1016/j.jweia.2018.02.007
49.
Martı́n
,
J.
,
Ooi
,
A.
,
Chong
,
M. S.
, and
Soria
,
J.
,
1998
, “
Dynamics of the Velocity Gradient Tensor Invariants in Isotropic Turbulence
,”
Phys Fluids
,
10
(
9
), pp.
2336
2346
.10.1063/1.869752
50.
Panda
,
J. P.
,
Warrior
,
H. V.
, and
Maity
,
S.
,
2017
, “
An Improved Model Including Length Scale Anisotropy for the Pressure Strain Correlation of Turbulence
,”
ASME J. Fluids Eng.
,
139
(
4
), p.
044503
.10.1115/1.4035467
51.
Mitra
,
A.
,
Panda
,
J. P.
, and
Warrior
,
H. V.
,
2019
, “
The Effects of Free Stream Turbulence on the Hydrodynamic Characteristics of an AUV Hull Form
,”
Ocean Eng.
,
174
, pp.
148
158
.10.1016/j.oceaneng.2019.01.039
52.
Sharma
,
A.
, Huang, L., Fang, H., and Li, X.,
2020
, “
Effects of Hydrodynamic on the Mobility of Phosphorous Induced by Sediment Resuspension in a Seepage Affected Alluvial Channel
,”
Chemosphere
,
260
, p.
127550
.
53.
Sharma
,
A.
, and
Kumar
,
B.
,
2017
, “
Boundary Layer Development Over Non-Uniform Sand Rough Bed Channel
,”
ISH J. Hydraulic Eng.
,
25
(
2
), pp.
162
169
.10.1080/09715010.2017.1391133
54.
Marsh
,
N. A.
,
Western
,
A. W.
, and
Grayson
,
R. B.
,
2004
, “
Comparison of Methods for Predicting Incipient Motion for Sand Beds
,”
J. Hydraulic Eng.
,
130
(
7
), pp.
616
621
.10.1061/(ASCE)0733-9429(2004)130:7(616)
55.
Sharma
,
A.
, and
Kumar
,
B.
,
2018
, “
Sheet Flow Hydrodynamics Over a Non-Uniform Sand Bed Channel
,”
Int. J. Sediment Res.
,
33
(
3
), pp.
313
326
.10.1016/j.ijsrc.2018.01.004
56.
Goring
,
D. G.
, and
Nikora
,
V. I.
,
2002
, “
Despiking Acoustic Doppler Velocimeter Data
,”
J. Hydraulic Eng.
,
128
(
1
), pp.
117
126
.10.1061/(ASCE)0733-9429(2002)128:1(117)
57.
Lacey
,
R. W.
, and
Roy
,
A. G.
,
2008
, “
Fine-Scale Characterization of the Turbulent Shear Layer of an Instream Pebble Cluster
,”
J. Hydraulic Eng.
,
134
(
7
), pp.
925
936
.10.1061/(ASCE)0733-9429(2008)134:7(925)
58.
Leonard
,
A.
,
1975
, “
Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows
,”
Adv. Geophys. A
,
18
, pp.
237
248
.10.1016/S0065-2687(08)60464-1
59.
Lumley
,
J. L.
,
1979
, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
,
18
(
4
), pp.
123
176
.10.1016/S0065-2156(08)70266-7
60.
Longo
,
S.
,
Clavero
,
M.
,
Chiapponi
,
L.
, and
Losada
,
M.
,
2017
, “
Invariants Ofturbulence Reynolds Stress and of Dissipation Tensors in Regular Breaking Waves
,”
Water
,
9
(
11
), p.
893
10.3390/w9110893
61.
Brugger
,
P.
,
Katul
,
G. G.
, and
De Roo
,
F.
,
2018
, “
Scalewise Invariant Analysis of the Anisotropic Reynolds Stress Tensor for Atmospheric Surface Layer and Canopy Sublayer Turbulent Flows
,”
Phys Rev Fluids
,
3
(
5
), p.
054608
.
62.
Panda
,
J. P.
,
Arindam
,
M.
, and
Warrior
,
H. V.
,
2020
, “
A Review on the Hydrodynamic Characteristics of Autonomous Underwater Vehicles
,”
Proc Inst. Mech. Eng. Part M: J Eng. Maritime Environ.
, 235(1), 15–29.
63.
Papanicolaou
,
A.
,
Diplas
,
P.
,
Evaggelopoulos
,
N.
, and
Fotopoulos
,
S.
,
2002
, “
Stochastic Incipient Motion Criterion for Spheres Under Various Bed Packing Conditions
,”
J. Hydraul. Eng.
,
128
(
4
), pp.
369
380
.10.1061/(ASCE)0733-9429(2002)128:4(369)
64.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
65.
Simonsen
,
A. J.
, and
Krogstad
,
P. A.
,
2005
, “
Turbulent Stress Invariant Analysis: Clarification of Existing Terminology
,”
Phys. Fluids
,
17
(
8
), p.
088103
.10.1063/1.2009008
66.
Bomminayuni
,
S.
, and
Stoesser
,
T.
,
2011
, “
Turbulence Statistics in an Open-Channel Flow Over a Rough Bed
,”
J. Hydraul. Eng.
,
137
(
11
), pp.
1347
1358
.10.1061/(ASCE)HY.1943-7900.0000454
67.
Emory
,
M.
, and
Iaccarino
,
G.
,
2014
, “
Visualizing Turbulence Anisotropy in the Spatial Domain With Componentality Contours
,”
Cent. Turbul. Res. Annu. Res. Briefs
, CA, pp.
123
138
.
68.
Stiperski
,
I.
, and
Calaf
,
M.
,
2018
, “
Dependence of Near-Surface Similarity Scaling on the Anisotropy of Atmospheric Turbulence
,”
Q. J. R. Meteorol. Soc.
,
144
(
712
), pp.
641
657
.10.1002/qj.3224
69.
Hanjalic
,
K.
, and
Launder
,
B. E.
,
1972
, “
Fully Developed Asymmetric Flow in a Plane Channel
,”
J. Fluid Mech.
,
51
(
2
), pp.
301
335
.10.1017/S0022112072001211
You do not currently have access to this content.