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gear caused by the turbine torque is 0.035 radian; the amplitude 
of vibration is also equal to 0.035 radian (at the gear), giving 
a total maximum deflection of 0.07 radian (1.65 in spring 
deflection), which corresponds to a maximum stress of about 
32,000 lb. per sq. in. in each spring. This stress is the true 
maximum stress at the outer fiber on the inside of the coil. 
It is composed of static stress of 16,000 lb. per sq. in. and a 
variable stress which has an amplitude of 16,000 lb. per sq. in. 
These stresses are very conservative for the spring steel used. 

The spring stops limit the maximum travel to 3 in., with a 
corresponding maximum stress of 53,500 lb. per sq. in. 

CONCLUSION 

It has been shown that it is possible to predict the suitability 
of any chosen gear flexibility if the drawings of the rotating 
parts for calculating the critical speeds and indicator cards 
(theoretical or actual) at two or three speeds are available. 

The calculation made in designing the springs for the ship 
installation were in some error because the natural frequencies 
were calculated too high by some 20 per cent. This can be 
attributed to lack of experience in calculating such marine 
installations, and in nowise vitiates the value of the method 
to those practiced in the art of calculating such things. 

Discussion 
H A N S B A U E R . 7 For purposes of discussion this paper may be 

considered under two headings: first, the application of exhaust 
turbines in reciprocating-engined steamships, and second, the 
mathematical theory of oscillations in elastic rotating systems. 

Concerning the first classification, the writer is able to offer 
observations based upon the successful operation of over 200 
vessels equipped with exhaust turbines constructed according to 
the Bauer-Wach system and aggregating approximately 1,000,-
000 hp. In that system, two single-reduction gears are connected 
by a Vulcan hydraulic coupling, the latter being interposed be-
tween the high-speed gear shaft and the low-speed pinion shaft. 
The hydraulic coupling serves both to absorb shocks and vibra-
tion and as a clutch to disconnect the turbine and high-speed gear 
from the engine and low-speed gear when maneuvering, or at 
other times when it is desired to run on the engine alone. 

Reversing is best performed when the exhaust turbine is dis-
connected, since it is practically impossible to synchronize the 
admission of steam to turbine and reciprocator as required for 
maneuvering, quite apart from the complicated design that it 
necessitates. Therefore, if the turbine is kept continually 
coupled to the engine, the gear teeth and the whole system are 
repeatedly subjected to reversal of stresses of unknown magni-
tudes. It may be claimed that this can be overcome by using 
the turbine alone when maneuvering. To do so,however, restricts 
the maneuvering power to that available from the turbine, and 
there are still torque variations due to dragging the engine. The 
much simpler method is to disconnect the turbine and use the en-
gine for maneuvering. 

That the hydraulic coupling provides complete protection of 
the turbine and gear system against torsional shocks or vibra-
tions originating in the engine and propeller system may be seen 
from torsiographs which have been published from time to time. 
This result is considered ample justification for a slippage which, 
be it noted, constitutes about one-half of 1 per cent of the total 
power. 

To introduce springs into an oscillating system is to invite 
trouble from vibration. By proper proportioning of one to the 
other the period may be controlled, but the tendency to oscillate 
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remains and will be felt at some frequency. The authors admit 
that it is impossible to design a spring coupling to damp out 
torsional vibrations at all speeds, and they should not be satisfied 
if they have succeeded in doing this in or near the usual running 
range of the engine, since, as all marine engineers know, a marine 
engine may be called upon to run at any speed up to the maxi-
mum, according to weather conditions, load, etc., and if torsional 
vibration occur even for only a short period, it may be detrimental 
to the gearing. Conditions in an oscillating system like the above 
linked by a flexible and elastic member will be much more difficult 
to determine, and almost impossible to control, if the propeller 
is momentarily lifted out of the water in a seaway. 

It is not quite clear what the authors mean by "propeller 
damping." The degree of propeller damping must necessarily 
be different under different draft and weather conditions. The 
propeller cannot prevent resonance as between the turbine sys-
tem and the engine system. Springs interposed between the two 
systems obviate the extreme stresses due to short-period oscilla-
tions, but are not effective—in fact, they constitute a source of 
danger when the frequency of the impressed forces approaches the 
natural frequency of oscillation of the spring-coupled system. 

A hydraulic coupling, on the other hand, not being elastic, 
does not transmit any torsional oscillations. 

The authors are to be commended for having gathered and 
analyzed mathematical researches relating to torsional vibration 
and the design of spring couplings. To criticize a detail, however, 
it does not seem advisable to the writer to base designs on stresses 
as high as 32,000 lb. per sq. in. in spring steel, since the springs 
may at times be compressed to the maximum travel when, as 
stated by the authors, the stress would be raised to 52,500 lb. 
per sq. in. This may occur frequently, as, for example, with a 
racing propeller in rough weather, or, again, in maneuvering. 

R. EKSERGIAN.8 The authors are to be congratulated on an 
excellent technical investigation of a complicated problem. An 
outstanding feature of the presentation is the clearness in pictur-
ing the phenomena with skilful approximations. 

The normal elastic curves in Fig. 8 show very clearly the ad-
vantage of elasticity at the coupling in producing large amplitudes 
for the propeller damping, which, from Equation [26], shows 
corresponding reduction in the amplitude of vibration caused by 
a given disturbing moment. 

The miter has been further impressed with the advantage of 
reducing the elasticities and inertias to a common shaft coordi-
nate. In this way a much clearer picture of the relative inertias 
and elasticities of the system is obtained. The turbine rotor of 
only 2120 lb-in.-sec.2 polar moment of inertia when reduced to 
the propeller-shaft coordinate and thereby increased by the square 
of the products of the gear ratio becomes 3,900,000 lb-in.-sec.2 

Thus the turbine becomes practically the pivot point of the sys-
tem. Likewise the turbine spindle, which is fairly flexible in 
itself, becomes extremely stiff when multiplied by the square of 
the products of the gear ratio and reduced to the propeller shaft. 

The authors' analysis for thus placing the flexibility in the main 
gear is very interesting. The ratios stated for geometrical spring 
systems appear obvious except the last one. A little considera-
tion, however, will show that ai = ()'j/)-3)«2 is correct if the ampli-
tude at the propeller-shaft junction is to remain the same. We 
have the two cases shown by Fig. 13. 

If the amplitudes a c at the junction of the propeller shaft 
remain the same for the two cases, then, with the assumption of 
the negligible amplitude of the reduced turbine mass due to its 
enormous value, the authors show that on the basis of a geo-
metrical-similarity comparison, the stresses and torques trans-

8 Consultant, Eng. Dept., E. I. du Pont de Nemours & Co. Wil-
mington, Del. Mem. A.S.M.E. 
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mitted are considerably increased when the spring system is 
placed in the high-speed gear. On the other hand, referring to 
Fig. 8, the amplitudes at the propeller-shaft junction on the basis 
of unit amplitude at the engine decrease with increased stiffness 
of the spring system. But the decreased amplitude at the pro-
peller, however, for the stiffer spring system may result because 

F I G . 1 3 

C A S E I 
ctD = a c 

acn = an'i 
as — <24 = «1 

If a4 = 0 , as = aI 
>'3 .. an = <*i — 
r 2 

C A S E I I 

OTD «C = CX2 
acr2 = aB>3 
CCB = cti = 0 

If OTC — 0 , CXD = «2 
rs .. at = an — n 

of the consequent decreased damping at resonance, in possibly 
larger actual amplitudes for the system under the exerting engine 
torque. Therefore OCD for the stiffer spring, as in Case 1, may be 
further augmented as compared with CXD in Case II, which would 
appear even more to favor the authors' conclusions. 

Another point of view in addition to the authors' proof of a 
condition of inherent high stresses, etc. in the secondary gear 
is on the basis of the dynamics of the system by a comparison of 
the elastic constants of the springs for the two cases. 

If T is the torque transmitted and <t> the corresponding relative 
angular displacement between the spider and gear rim, then the 
elastic or spring constant is 

K = 
nPR 

<#> 8NPD3 

d'GR 

nRWG 
8nD3 

Using the authors' geometrical-similarity assumption and not-
ing that the reduced spring constant of the secondary gear is 
K j ' = Ki {I'l/nY, we have the ratio of the elastic constants 

K2 

thRWGi 
8N1D13 

712B2WG2 
8 A W 

The greater the flexibility, the smaller the spring constant; 
therefore, if the ratio C1/C2 is greater than unity, the greatest 
flexibility is obtained by placing the springs in the primary or 
low-speed gear. If , on the other hand, the factor (r2/ri)3 > 
fa/nO®, the greatest flexibility is obtained in the secondary gear. 
For this latter condition to be realized, assuming the gear ratio 
ri/r3 = 5.8, then r\/r2 < 0.31, which from constructional limita-
tions alone it is impossible to obtain. With the practical value 
of n /r 2 = 0.679, the ratio of the spring constants is E\/K2 = 
10.5. This shows, when considering the flexibilities of the sys-
tem, the considerable advantage in placing the springs in the low-
speed gear. 

The actual torques transmitted for the two cases are: K2 CXDI 

with spring in low-speed gear, and KI FAIN) CXD with spring in 
high-speed gear. Hence the torques transmitted for the two cases 

Tl 
T: 

<4;) aDi Ii'i aD 1 

K2aD2 K2aDi 

which agrees with the author's conclusions, provided <XDI = 
ao2-

In estimating the modes of oscillation corresponding to the 
natural frequencies of the system, the authors have shown that 
the problem is concerned with the second mode of oscillation. 
The reduced dynamical system shown in Fig. 6 has five degrees 
of freedom, and by using the Holzer method the two lower fre-
quencies can be accurately estimated by trial solutions. 

By further combinations of the inertias and elasticities we can 
reduce the system to one of two degrees of freedom, which would 
be in fair agreement with the first mode and approximately ac-
curate for the second mode when compared with the system of 
five degrees of freedom. Such a resolution, however, may be of 
interest. 

F I G . 1 4 

ck-OT—a 

F I G . 1 5 

The approximate two-degree system is shown in Fig. 14. The 
inertias of the gearing when reduced to the line shaft are small 
compared with the inertia of the turbine. Therefore they may 
be neglected or added to the turbine inertia The inertia of 
the propeller is l p , and that of the engine, It. 

To approximate the elastic constant of the engine shaft to 
the gearing, if k„, kt, and kc are the elastic constants shown in 
Fig. 15 between the gearing and engine masses I a, lb, and Ic, 

la 
1_ 
A74 

+ I 7 ( I + I + i 
ka fob / \ka kb kc 

la + lb + Ic 

Now considering the system shown in Fig. 14, we have for the 
kinetic and potential energies, 

T = 'A /pfl'2 + 'A h (nin2(0' + Si' + 02') + 03')2 + V« h («' 
+ 0i' + <V)s 

V = ' / » kA" + V2 W + V2 faV + ' A W 

where 0' and <#>' are the first derivatives of 0 and <j> with respect 
to time. 

The momentum corresponding to the coordinate 0 is a constant, 
which we may take equal to zero, i.e., 

Ip6' + h (niTH («' + 0i' + 0'2) + <h')nin2 + h (0' + 0' 1 + e\) = 0 

from which we can eliminate the coordinate 6 in the expression of 
the kinetic energy. Or we may differentiate directly, so that, 

(IP + (n,n2)2A + 14)6° = — ?W,(n,rte(0i ' + 02") + <h") 
— /4(0i" + 0 / ) [33] 

n/nsfe+ei-i-e?) -vim 
'[tv, n,2fe+B,+e£)+^Jj 
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from which we can express the second derivative 4," in terms 
of 0i", 6i", Bi", and 03". 

The equations of motion corresponding to the coordinates 
02 and 03 are, 

d(<>T \ = 

dt \be'J 

(nin2 — A ^ /403" + + ~ — BJ UBS + A-40< = 0 

The frequencies are obtained from the solution of the deter-
minate 

» W 3 [n,w2(0" + 01" + 02") + 4,3"] 

= — A)202..[34] 

t ( r r ) = + + 02") + *» ' 1 dt \Z><t>3 / 

= — hrf3. . . .[35] 

n\rwA 

which, on combining, give 

fe02 = ?ll»2^303, 02 = 
ninji3 

d /dr\ = 

dt Vc)0!; 
mns/j [niW2(0" + 0i" + 02") + <£3"] 

+ / < ( 0 " + 0 i " +0.,") = —A-101. 

t \ I T ) = 74 (»" + e ' " + v) = ~ k ' 9 i -dt \O0 4 / 

• [36] 

• [37] 

On substituting the values of 0i" and 02" in terms of 
04" in [33], we have 

where 

72-1 
A = 

0" = — A<£3" — 2304" 

B = 

+ (nin2)2 / 3 + 

(n .^) 2 ^ / 3 + ( l + ~ J U 

IP + (»i»4)2 + /1 

[> + <**>' fe + s)" 7ll?l2A i j f o " + »l7l2 I B ) IsOi" 

+ A's ĵ = 0 

71)712 ̂  — A j h, ki w2 ( 1 B I /4 

B / „ 
= 0 

that is, the torque of the elastic gear balances the reduced inertia 
torque of the turbine shaft. This provides additional elimination 
of the coordinates. 

The two remaining equations are, 

On substituting for the numerical values given by the authors 
for the actual installation, a good check is found with the fre-
quency values obtained by them. A closer approximation would 
be obtained by including the inertias of the gearing with an addi-
tional degree of freedom. 

The determinate, however, is of use for comparing different 
spring constants and in approximating the frequencies for similar 
installations. 

In order to calculate the ratio of the amplitudes a different sys-
tem of coordinates is used as shown in Fig. 16. The equations of 
motion, with these coordinates are 

7404' = kt(6t — 0„) 

Lfa" = h (01 »l7l20j) 

Ip 01" = kl (02 — Bl) 
and 

k2 (03 — 02) + kt (0i — Bi) — A'i (0a — 0i) = 0 

— k2 (03 — Bi) + nin2k3 (<t> 3 — ?ii7i203) = 0 

If we assume the amplitude at the engine equal to unity, then 

FIG. 16 

Combining [34] and [37] with [36], we note that 

kiBi = k20i + &404 

which we should anticipate immediately from the condition of 
equilibrium at the coupling. Therefore 

k2 ki ks ki 
0i = - 02 + - 04 = thn2 - 4,3 + - 04 

ki ki ki ki 

02 = 
h- ' I JO)2 

Bi = 

+ k2 + k. 

ki (ki — /4W2) 
kt (ki — Ipoi-) 

ki n ki 
k2 k2 

k2 + (7li7i2)2A-3 „ 
1 r 0 i = 7 7il7l2A'3 ki 

niThkiOt 

and 

Substituting the values of 0", 0i", and 02" in terms of and 
Bi" in Equations [35] and [37], we obtain 

niihk-3 / ?ii7i2A'3 k3 — 101I3 

The last equation could also be used for calculating the frequen-

H E I N R I C H H O L Z E R . 9 To find out the best way of coupling 
an exhaust turbine of steady-torque characteristic to a reciprocat-
ing engine of variable-torque characteristic we may start by con-
sidering the fact that vibration in the turbine shafting can arise 
only from the coupling linkage. Therefore, if the point of the 
engine shafting at which the turbine branch is attached has no 
vibratory motion itself, the whole turbine branch will remain 
without vibrations. 

The turbine branch should be attached to the main system at 
a point where a node of the vibration of the main system occurs. 
In general the vibration of the propeller system will consist of 
harmonic components of different periods and phases, and a cou-
pling point without any vibratory motion will not be available. 
In this case we must of course be content to couple the two sys-
tems at one of the nodes of the main harmonic component. 
At the coupling point the amplitudes of both the main shaft and 
the turbine branch are not only the same, but also the harmonic 
coupling torques are equal but of different signs, representing 

9 Consultant on Vibration and Strength Problems, Schwabach, 
Germany. 
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the action—and reaction—torque. By means of these harmonic 
coupling torques both the main shaft and the turbine branch 
can be treated as free systems independent of each other. At the 
turbine branch the harmonic coupling torque is the only exciting 
torque determining completely the vibratory motion of the tur-
bine-gearing system. Now it is well known that of all vibratory 
states of a given system, the natural or free vibrations of the sys-
tem demand the smallest exciting torques down to zero, if there is 
no damping in the system. The effect of the reciprocating engine 
on the turbine branch, represented by the harmonic coupling 
torque, will therefore be eliminated when the turbine-gearing 
system is tuned to the frequency of the main component vibra-
tion of the engine-propeller system. When, for instance, the 
plant is ordinarily running between 85 and 89 r.p.m. and the 
main vibration is of third order, we may tune the turbine-gearing 
system to the free frequency of 3 X 87 = 261 cycles per min., if 
there is not critical speed in or near the working range; we may 
tune it to 3 X 80 = 240 cycles per min. if there is a heavy critical 
speed of the third order at 80 r.p.m. The flexibility of the 
springs coupling the low-speed gear to the propeller shaft is 
therefore of little or no account, though it is never wrong to make 
the springs as flexible as possible. When running at the speed 
to which the turbine-gearing system is tuned, there will be no 
vibration torque whatever in the gearing nor in the springs con-
necting the low-speed gear to the propeller shaft. 

Of course, the best solution is to tune the turbine branch to the 
best running conditions and at the same time attach it to the 
propeller shaft at the point of least amplitude of vibration. 

FRANK M . LEWIS. 1 0 The paper directs attention to the dy-
namic problems which arise when reciprocating machinery is 
used in conjunction with geared transmission. As the authors 
state, it is necessary that a positive torque be always maintained 
at the gear faces of such an installation. The irregular torque of 
the reciprocating machinery can start oscillations in the system 
which may cause the torque at the gear teeth to pass through 
negative loops. The pounding thus caused results in rapid 
deterioration of the gears. It is very difficult to insure this 
condition of positive torque without the introduction of a con-
siderable amount of elasticity at an appropriate point in the sys-
tem. In all the installations with which the writer is familiar, 
elasticity in some form was introduced—hydraulic, electrical, or 
in the form of mechanical springs. In the installation described 
springs have been used and the writer believes that the authors 
have effected a very satisfactory solution of the problem. 

Propeller damping coefficients are deduced from the so-called 
propeller characteristics. The damping coefficient is essentially 
the slope of the torque-angular-velocity curve. It is this slope 
which the authors deduce in their Equations [10] to [19]. How-
ever, the writer is not quite in agreement with then' results. 
The curve the}' give is based on an assumption that the ship's 
speed increases as the revolutions increase, while the slip increases 
only slightly. The condition of a vibrating propeller differs 
widely from this, however. Here the ship's speed remains con-
stant while the slip is varying widely as the propeller vibrates. 
A torque-angular-velocity curve for this condition would have a 
much steeper slope than the one corresponding to Fig. 11, with 
a consequent higher damping coefficient. The writer deduced a 
method of calculating propeller damping coefficients based on 
these latter assumptions in 1925. While he has no data relative 
to the propeller dealt with in the paper, the method would prob-
ably give a damping coefficient 50 per cent to 75 per cent higher 
than the one calculated by the authors. 

Any check of propeller damping coefficients by direct experi-
10 Consulting Engineer and Professor, Webb Institute of Naval 

Architecture, New York, N. Y. Mem. A.S.M.E. 

ment is a very difficult matter. The best that can be done is 
to make torsiograph measurements on actual ships where all 
conditions and exciting forces are known. It is not an easy 
matter to make tests under such satisfactory conditions that 
reliable information will result. 

In regard to the inertia effect of the water, our knowledge of 
propellers is also very inadequate, even more so than in regard 
to the damping effects. It is usual to make a purely arbitrary 
allowance of some 10 to 25 per cent of the propeller inertia, ac-
cording to the taste of the calculator. The writer has made 
many torsional vibration investigations on ships, but has never 
been able to obtain a sufficiently comprehensive set of observa-
tions to permit an accurate calculation of either the inertia or 
damping effects of the water. 

C . RICHARD SODERBERG.11 On page 8 there is an attempt to 
determine the damping properties of a ship propeller from the 
speed-horsepower curve. Now, a speed-horsepower curve such 
as the one shown in Fig. 11 is based on a steady state of motion, 
that is, the speed is assumed to be constant for each horsepower 
reading. This is so important that great care has to be taken 
in guarding against speed variations during the test. In view of 
this, it does not appear permissible to draw conclusions of the 
damping properties from this curve. For the damping phe-
nomenon we are interested in the behavior of the propeller 
under cyclic variations of the speed; the speed-horsepower curve 
is entirely unrelated to this phenomenon. 

Just what ought to be the correct relation for the damping re-
sistance is difficult to say, but it is probable that it will depend 
upon the velocity of the oscillation da/dt as well as on the mean 
speed of rotation N. The comparatively satisfactory agreement 
of tested and calculated amplitudes must be regarded as acci-
dental. 

O. G. TIETJENS.12 In this paper an attempt has been made to 
derive the damping constant for small torsional vibrations of a 
propeller shaft from a curve representing the indicated horse-
power as a function of the revolutions per minute of the propeller. 
Leaving the question open for a moment as to whether the curve 
shown in Fig. 11 of the paper is the right one or not, it may be of 
interest to explain in general how the propeller supplies the damp-
ing, or in what manner the amount of energy that corresponds to 
the damping is being dissipated by the propeller. 

If we consider the performance of a propeller-blade element 
having the peripheral speed u and the axial speed w, Fig. 17, we 
see that the relative speed of the blade element with respect to 
the water will be v = -\/(M2 + to2). Each blade element has a 
certain angle of attack a with respect to the relative velocity v. 
The torsional vibration of the propeller shaft produces a periodic 

F I G . 1 7 
(The variation of the peripheral speed u of a blade element caused by torsional 
vibration of the propeller increases and decreases periodically the angle of at-

tack of the blade element.) 

11 Development Division Engineer, Westinghouse Electric & Manu-
facturing Co., East Pittsburgh, Pa. Mem. A.S.M.E. 

12 Research Laboratories, Westinghouse Electric & Manufacturing 
Co., East Pittsburgh, Pa. Mem. A.S.M.E. 
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increase and decrease in the peripheral speed u of each blade 
element. The amplitude of this variation in u is about ± 4 
per cent in the actual case dealt with in the paper. Therefore, 
since the axial velocity w remains constant during this periodic 
variation of the peripheral speed, we see from Fig. 17 that the 
torsional vibration of a propeller shaft produces a similar varia-
tion in the angle of attack of each blade element. These changes 
of the angle of attack are combined with a small variation of the 
relative velocity v as shown in Fig. 17. However, the variation 
of the angle of attack is the much more important factor. 

On the other hand, an increase in the angle of attack of a blade 
element means an increase of the lift of this element, and a de-
crease in the angle of attack means a decrease of the lift. How-

to the amount of variation in the angle of attack. If the fre-
quency of the torsional vibration of the shaft, and therefore the 
frequency of the variation of the angle of attack, becomes too 
high, say, 100 cycles per second, the time for developing the vor-
tices will be too short and very little or no energy will be dissi-
pated. For very high frequencies, therefore, the propeller will 
supply no damping at all. In this case the tangent to the curve 
in Fig. 11 should be a horizontal line and C = dT/do> = 0. For 
a smaller frequency of variation the angle of attack C has a cer-
tain finite value. Therefore it is seen that the damping constant 
must be considered an unknown function of the frequency / , or 

C = 
dT 
do> 

m 

F I G . 1 8 

(The kinetic energy of the vortex path produced per unit time corresponds 
to the work of damping done by the propeller.) 

However, even if we make the assumption that the frequency 
of the torsional vibration of the shaft is small enough to guarantee 
the generation of the vortices to their full size, it is further neces-
sary to take into account a certain relation between the hydrody-
namical forces and the frequency. This relation depends on the 
expression irl/lv, where I is the width of the blade, v the relative 
velocity of the blade element, and t the time of one cycle. The 
smaller the above expression, the less does the lift of a blade 
element, and therefore also the thrust as well as the torque, de-
pend on the frequency. However, according to a theory devel-
oped by W. Birnbaum,15 even for 

xl 
tv 

= 0.15 

F I G . 1 9 
(Showing two vortices which are generated behind a blade section by a varia-

tion in lift of this blade.) 

ever, we know13 that an increase in the lift generates behind the 
blade element a vortex which rotates in a counterclockwise direc-
tion if the blade element moves from the right to the left, and we 
know that a decrease of the angle of attack causes a vortex 
which rotates in a clockwise direction. Therefore we see that 
the torsional vibration of the propeller shaft gives rise to a periodic 
generation of vortices as shown in Fig. 18. The kinetic energy 
of these vortices produced per unit time corresponds to the work 
of damping done by the propeller.14 

Fig. 19 shows a picture of a wing section with two vortices 
generated by a variation in lift. The vortex at the right corre-
sponds to an increase of the lift from zero to a certain amount; the 
vortex close to the trailing edge of the wing section corresponds 
to a decrease of the lift to zero. Due to the fact, however, that 
for the propeller-blade elements the variation in lift caused by the 
torsional vibration is much smaller than that corresponding to 
Fig. 19, the vortices for the propeller blades will also be much 
smaller than shown in this figure. 

However, it is important to realize that a certain time is re-
quired to enable these vortices to reach the size that corresponds 

13 0 . G. Tietjens, "Hydro- und Aeromechanik nach Vorlesungen 
von L. Prandtl," Vol. II, pp. 180-184, Berlin, 1931. 

14 It may be mentioned that these vortices have nothing to do with 
the so-called Karm&n vortex path. 

the amount of the variation in the lift, and therefore also in the 
torque, is about 20 per cent smaller than that based on the as-
sumption of a steady flow, i.e., for lim l/t = 0. Assuming the 
data given in the paper, i.e., a blade width of about 2 ft., a 
frequency of 4 cycles per second, and a relative velocity of 4200 
ft. per min. or 70 ft. per sec., we obtain approximately 

•xl 
- = 0.3 
tv 

which makes it evident that the performance of a propeller with 
such a variation of its angle of attack will be different from that 
taking place under steady-flow conditions. 

However, even if we have a sufficiently low frequency, or high 
velocity v, so that the above expression becomes small enough to 
justify the assumption of steady flow around the blades, the calcu-
lation of the damping constant should be based on a curve which 
gives the indicated horsepower as a function of the propeller revo-
lutions for constant ship speed instead of the curve of Fig. 11 of 
the paper which gives the indicated horsepower as a function of 
the propeller r.p.m. where the ship speed varies with the r.p.m. 
As also mentioned by Professor Lewis, this has to be taken into 
account since the ship speed remains constant while the peripheral 
speed of each blade element varies due to the torsional vibration 
of the propeller shaft. 

The curve for constant ship speed, however, is steeper and has a 
larger tangent than the curve of Fig. 11 at points of corresponding 
values of propeller revolutions. This can easily be seen from 
Fig. 17 if we realize that with increasing r.p.m. the increase in 
the angle of attack, and hence the increase in the torque, would 
be smaller if the speed of the ship, and therefore the axial velocity 
w increases with increasing propeller revolutions. 

If we could make the assumption that the performance of 
the vibrating blade can be approximated by the performance of the 
blade in steady flow, we could then obtain the above-mentioned 

15 W. Birnbaum, "Das ebene Problem des schlagenden Fluegels," 
Zeit. f. Angcw. Math. u. Mech., 1924, p. 277. 
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curve of indicated horsepower as a function of propeller revolu-
tions for constant ship speed if the r.p.m. is suddenly increased 
or decreased and the indicated horsepower is then determined 
before the ship has had time to change its speed. 

However, since we do not know in what manner the damping 
depends on the frequency, or more generally, on the term irl/tv, 
the derivation of the damping constant from a curve similar to 
Fig. 11 does not appear to be based on sound physical principles. 

These remarks should not be considered as a criticism of this 
interesting paper as a whole, but as referring only to that part 
of it which deals with the theoretical derivation of the damping 
constant. 

A U T H O R S ' C L O S U R E 

The primary purpose of the Vulcan coupling in the Bauer-Wach 
exhaust turbine is to permit the disengagement of the low-
pressure turbine during maneuvering. Incidentally, it may 
minimize vibrational effects. All the published studies of this 
coupling concern themselves with its steady-state operation at 
constant rotational speed on both sides of the coupling. The 
Vulcan coupling must have distinct reactions to vibratory 
motion. There must be a loss of energy associated with oscilla-
tory relative motion between the parts; and there is a torque be-
tween the driving and driven members that depends on their rela-
tive displacement. This elastic torque would be analogous to the 
synchronizing torque found in synchronous electrical machinery. 

No quantitative values of these damping and elastic torques 
are known when the coupling is applied. The application 
may be effective against the vibration or it may not; that de-
pends on the relationship of the vibratory properties of the 
coupling to the rest of the system. 

As a damping device the Vulcan coupling is in its best position 
on the high-speed shaft. As an elastic device it might as well 
be torsionally rigid in this position. Without quantitative 
knowledge of its damping properties, reference must be made to 
experience. If it is a universally effective protective device 
against vibration, the gear teeth in all the 200 Bauer-Wach 
installations will only be worn or wire-edged on the driving side. 
If it is not, signs of pounding will appear on both sides of the 
teeth. The authors have been informed that such pounding 
and wear on both sides of the gear teeth is in evidence in some 
installations where the Vidcan coupling is used. 

The spring gear described in the paper eliminated signs of 
pounding on both sides of the gear teeth. 

It must be remembered that gear-tooth pounding and ultimate 
breakage are usually fatigue effects. Destructive effects re-
quire time and the repeated action of millions of blows. If 
these blows can be eliminated from the speed range where the 
ship runs 95 per cent of the time, the number of blows has been 
reduced to such an extent that other factors become more 
important in the ultimate life of the equipment. It is also 
understood that the Bauer-Wach system must be disconnected at 
lower speeds on account of pounding in the gear teeth. 

Propeller damping is a very real thing. It is so effective that 
the one-noded vibration has practically no amplitude even at 
resonance. The purpose of a spring coupling is to keep ampli-
tudes of stress harmless even in the event of resonance. Ex-
perience shows that it accomplishes this end. 

The working spring stresses amount to 16,000 lb. per sq. in. 
static with an oscillating stress with 16,000 lb. per sq. in. ampli-
tude; these stresses are well within the limit of safety of the 
material used as one year's continuous service amply proves. 
The maximum stress of 52,500 lb. per sq. in. occurs at low 
speeds and is not repeated often. It is also within the limits of 
safety for the material. 

Dr. Eksergian's mathematical treatment reducing the compli-

cated system to one of a few degrees of freedom is very interesting. 
It can be very useful in calculating the values of the natural 
frequencies after the numerical data on inertias and spring 
constants have been obtained. 

Mr. Holzer's contention that the whole problem of oscillatory 
gear stresses could be eliminated by placing the gearing at a node 
in the elastic system is entirely correct. If the second reduction 
gear could have been placed at the node of the two-noded mode 
of motion, the gears would need no elasticity to protect them. 
Unfortunately insurance regulations and considerations other 
than torsional vibration determine the masses of the steam 
engine and propeller and the size of the main propeller shaft. 
The properties of most ship installations are such as to put the 
important node somewhere in the propeller-shaft alley far aft of 
the available engine-room space. These practical reasons are 
determining factors, especialty when the exhaust turbine is 
installed in a ship originally designed to operate only with 
a multiple-expansion steam engine. 

Dr. Holzer's statement that tuning the turbine and gear 
system would entirely eliminate any gear-torque reactions at 
those speeds where the harmonic frequencies were in resonance 
with the tuned frequency of the branch system, is correct. How-
ever, unless this tuned frequency is exactly equal to the 2-noded 
natural frequency of the system, it does not offer any great ad-
vantage since the maximum force in the gear teeth grows very 
rapidly as the 2-noded frequency recedes in either direction 
from the tuned frequency of the branch system. Practically, 
this means that the natural frequency of the branch system 
would have to be adjustable since it is almost impossible to calcu-
late within limits of 5 to 10 per cent of the actual value of the 
2-noded critical speed of one of these installations. 

In the case of the Susan V. Luckenbach the 2-noded natural 
frequency is somewhere in the order of 4 cycles per second, which 
would require a flexibility between the turbine and gearing about 
50 times as great as that of the present pinion shaft. Such a 
flexible coupling would certainly require more space than is used 
at present between the turbine and the gearing. The spring 
gear as actually used takes up no more space than an installa-
tion which has no flexibility in it. In the engine room of a ship, 
space is at a great premium. 

With adjustable flexibility in the turbine coupling, Dr. Hol-
zer's scheme is not only theoretically correct, but probably would 
offer actual practical advantages. Without adjustability and 
with complete dependability on design calculations, we feel that 
the spring gear used by us in the Susayi V. Luckenbach probably 
gives a better practical answer. 

The spring gear as used is not only a theoretical cure for a 
difficult problem, but it works. 

Messrs. Lewis, Soderberg, and Tietjens have attacked the 
authors' method of calculating the propeller damping. The 
authors cannot defend the method used on physical grounds 
and can only add their desires to those of the discussors for a 
good theoretical and experimental method for determining the 
actual values for propeller damping. They cannot agree with 
Mr. Soderberg that the method is completely valueless, however. 

First of all, the damping constant found by the authors' 
method agrees in form with those found by Frahm and Lewis: 

Lewis: C 

dT 

Frahm: C = r -

Ormondroyd and Kuchler: C = I n — 1 ) ~ 
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where T = propeller torque (steady rotation) 
01 = angular velocity of propeller (steady rotation) 
S = slip of propeller 
r = Frahm's constant 
n = exponent of N (r.p.m.) in expression for propeller 

torque (steady rotation). 
The disagreement between these methods concerns only 

the value of the constant, which in the authors' method is 3. 
Lewis, in his paper cited on page 5, gives a method for calculating 
this constant from propeller-model tests and based on good 
physical reasoning. Using data published by Porter16 based on 

16 F. P. Porter, "Practical Determination of Torsional Vibration in 
an Engine Installation," Trans. A.S.M.E., 1929, paper APM-51-52, 
p. 241. 

the Lewis method, this constant should be about 3.7 for the 
propeller in question, although Porter's data refer to three-
bladed propellers and the propeller in the authors' case has four 
blades. Frahm's constant as published by Porter in the same 
paper was 3.8. 

General considerations indicate that the damping constant 
found by the authors' method will always be too small. This 
leads to the prediction of larger amplitudes than actually exist, 
which is on the safe side as far as design prediction is concerned. 

The method proposed by Lewis is the best available, although 
Tietjens indicates that the problem is even more complicated 
than indicated by Lewis. What is really needed for a large 
class of ship-machinery vibration problems is an experimental 
study of propeller damping effects. 
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