Abstract

Ductwork components in ventilation systems are often installed in close proximity to each other due to space constraints. Published pressure loss coefficients are, however, only valid if there are sufficient distances between components. In this work, pressure losses of common combinations of two, three, and four bends and the addition of internal vanes were investigated with computational fluid dynamic simulations and validated with reference data. Pressure losses of combinations of bends without vanes were higher or lower than the sum of the single pressure losses of the components (combination effect), depending on the components and orientation. For bends with abrupt deflections, strong combination effects occurred; in some cases, pressure losses doubled. The spacing between the components was also a relevant factor. Combination effects were most pronounced for spacing lengths of the same order as the length of the flow separation region of the upstream bends. Consequently, certain spacer lengths were particularly unfavorable. Combination effects were found to be complex to predict and fluid simulations proved to be useful for analyzing the interactions. Adding vanes was found to be very useful. For bends and combinations with sharp deflections, the pressure loss coefficients were reduced by a factor of ten with vanes. Vanes also effectively reduced detrimental combination effects. The combination pressure losses with vanes were in all cases lower than the sum of the single components pressure losses. Pressure loss coefficients for combinations with vanes had a strong dependency on the Reynolds number. Furthermore, the downstream flow distributions were more homogeneous with vanes.

References

1.
ASHRAE
,
2016
,
Duct Fitting Database
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
.
2.
CIBSE (Butcher, K. J.)
,
2007
,
CIBSE Guide C—Reference Data
,
The Chartered Institution of Building Services Engineers
,
London
.
3.
SMACNA
,
2006
,
HVAC Systems—Duct Design
, 4th ed.,
Sheet Metal and Air Conditioning Contractors National Association
, Chantilly, VA.
4.
VDI Gesellschaft,
2006
, VDI 2087 Bemessungsgrundlagen, Luftleitungssysteme, VDI-Verlag, Düsseldorf, Germany.
5.
Schmandt
,
B.
, and
Herwig
,
H.
,
2011
, “
Internal flow Losses: A Fresh Look at Old Concepts
,”
ASME J. Fluids Eng.
,
133
(
5
), pp. 051201.10.1115/1.4003857
6.
Sprenger
,
H.
,
1969
, “
Druckverluste in 90°-Krümmern Für Rechteckrohre
,”
Schweizerische Bauzeitung
,
87
(
1
), pp.
223
231
(in German).10.5169/seals-70631
7.
DIN EN 1505
,
1998
, Lüftung von Gebäuden—Luftleitungen Und Formstücke Aus Blech Mit Rechteckquerschnitt—Maße, Deutsche Fassung EN 1505:1997, Beuth Verlag, Berlin, Germany.
8.
Mumma
,
S. A.
,
Mahank
,
T. A.
, and
Ke
,
Y. P.
,
1997
, “
Close Coupled Ductwork Fitting Pressure Drop
,”
HVACR Res.
,
3
(
2
), pp.
158
177
.10.1080/10789669.1997.10391369
9.
Prince
,
J.
,
Tabarra
,
M.
,
Alexander
,
J.
, and
Peiro
,
J.
,
2015
, “
On the Prediction of Pressure Losses in Complex Flow Scenarios Using CFD
,”
16th Int. Symp. Aerodyn
,
Vent. Veh. Tunnels
,
Seattle
, WA, Sept. 15-17, pp.
535
547
.https://www.researchgate.net/publication/283211707_On_the_prediction_of_pressure_losses_in_complex_flow_scenarios_using_CFD
10.
Sleiti
,
A. K.
,
Zhai
,
J.
, and
Idem
,
S.
,
2013
, “
Computational Fluid Dynamics to Predict Duct Fitting Losses: Challenges and Opportunities
,”
HVACR Res.
,
19
(
1
), pp.
2
9
.10.1080/10789669.2012.716341
11.
Tawackolian
,
K.
, and
Kriegel
,
M.
,
2022
, “
Turbulence Model Performance for Ventilation Components Pressure Losses
,”
Building Simul.
,
15
(
3
), pp.
389
399
.10.1007/s12273-021-0803-x
12.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
13.
Lardeau
,
S.
, and
Billard
,
F.
,
2016
, “
Development of an Elliptic-Blending Lag Model for Industrial Applications
,”
AIAA
Paper No. 2016-1600.10.2514/6.2016-1600
14.
Lardeau
,
S.
, and
Manceau
,
R.
,
2014
, “
Computations of Complex Flow Configurations Using a Modified Elliptic-Blending Reynolds-Stress Model
,”
Proceedings of the 10th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements
, Marbella, Spain, Sept. 17–19, pp.
17
19
.https://hal.science/hal-01051799/document
15.
Durbin
,
P. A.
,
2018
, “
Some Recent Developments in Turbulence Closure Modeling
,”
Annu. Rev. Fluid Mech. 2018
,
50
(
1
), pp.
77
103
.10.1146/annurev-fluid-122316-045020
16.
Siemens Industries Digital Software
,
2022
,
Simcenter STAR-CCM+ User Guide, Version 17.02
, Siemens Industries Digital Software, Plano, TX.
17.
Idelchick
,
I. E.
,
2008
,
Handbook of Hydraulic Resistance
,
JAICO publishing House
, Mumbai, India.
18.
ASHRAE
,
2017
,
Standard 120-2017: Method of Testing to Determine Flow Resistance of HVAC Ducts and Fittings
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
.
19.
ASHRAE
,
2021
, “
Chapter 21: Duct Design
,”
Handbook-Fundamentals
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
Atlanta, GA
.
20.
Koch
,
P.
,
2006
, “
The Influence of Reynolds Number and Size Effects on Pressure Loss Factors of Ductwork Components
,”
Build. Serv. Eng. Res. Technol.
,
27
(
4
), pp.
261
283
.10.1177/0143624406071472
21.
Gan
,
G.
, and
Riffat
,
S. B.
,
1999
, “
Determination of Energy Loss Characteristics of Dampers
,”
Int. J. Energy Res.
,
23
(
1
), pp.
61
69
.10.1002/(SICI)1099-114X(199901)23:1<61::AID-ER461>3.0.CO;2-S
22.
Shao
,
L.
, and
Riffat
,
S. B.
,
1995
, “
Accuracy of CFD for Predicting Pressure Losses in HVAC Duct Fittings
,”
Appl. Energy
,
51
(
3
), pp.
233
248
.10.1016/0306-2619(95)00002-A
23.
Iacovides
,
H.
,
Launder
,
B. E.
, and
Li
,
H. Y.
,
1996
, “
Application of a Reflection-Free DSM to Turbulent Flow and Heat Transfer in a Square-Sectioned U-Bend
,”
Exp. Therm. Fluid Sci.
,
13
(
4
), pp.
419
429
.10.1016/S0894-1777(96)00096-9
24.
Lindgren
,
B.
,
Osterlund
,
J.
, and
Johansson
,
A. V.
,
1998
, “
Measurement and Calculation of Guide Vane Performance in Expanding Bends for Wind-Tunnels
,”
Exp. Fluids
,
24
(
3
), pp.
265
272
.10.1007/s003480050173
25.
Atkin
,
S. M.
, and
Shao
,
L.
,
2000
, “
Effect on Pressure Loss of Separation and Orientation of Closely Coupled HVAC Duct Fittings
,”
Build. Serv. Eng. Res. Technol.
,
21
(
3
), pp.
175
178
.10.1177/014362440002100305
26.
Pruvost
,
J.
,
Legrand
,
J.
, and
Legentilhomme
,
P.
,
2004
, “
Numerical Investigation of Bend and Torus Flows, Part I: Effect of Swirl Motion on Flow Structure in U-Bend
,”
Chem. Eng. Sci.
,
59
(
16
), pp.
3345
3357
.10.1016/j.ces.2004.03.040
27.
Sami
,
S.
, and
Cui
,
J.
,
2004
, “
Numerical Study of Pressure Losses in Close-Coupled Fittings
,”
HVACR Res.
,
10
(
4
), pp.
539
552
.10.1080/10789669.2004.10391119
28.
Moujaes
,
S. F.
, and
Aekula
,
S.
,
2009
, “
CFD Predictions and Experimental Comparisons of Pressure Drop Effects of Turning Vanes in 90 Duct Elbows
,”
J. Energy Eng.
,
135
(
4
), pp.
119
126
.10.1061/(ASCE)0733-9402(2009)135:4(119)
29.
Ai
,
Z. T.
, and
Mak
,
C. M.
,
2013
, “
Pressure losses Across Multiple Fittings in Ventilation Ducts
,”
Sci. World J.
,
2013
, pp.
1
11
.10.1155/2013/195763
30.
Nugroho
,
S.
, and
Hidayatulloh
,
A.
,
2016
, “
Performance Analysis of The Effect on Insertion Guide Vanes For Rectangular Elbow 90° Cross Section
,”
EMITTER Int. J. Eng. Technol.
,
4
(
2
), pp.
358
370
.10.24003/emitter.v4i2.157
31.
Gao
,
R.
,
Chen
,
S. K.
,
Zhao
,
J. X.
,
Zhang
,
Y.
, and
Li
,
A. G.
,
2016
, “
Coupling effect of Ventilation Duct Bend With Different Shapes and Sizes
,”
Building Simul.
,
9
(
3
), pp.
311
318
.10.1007/s12273-015-0267-y
32.
Kumar Saha
,
S.
, and
Nandi
,
N.
,
2017
, “
Change in Flow Separation and Velocity Distribution Due to Effect of Guide Vane Installed in a 90 Pipe Bend
,”
Mech. Mech. Eng.
,
21
(
2
), pp.
353
361
.http://www.kdm.p.lodz.pl/articles/2017/21_2_12.pdf
33.
Sleiti
,
A.
,
Salehi
,
M.
, and
Idem
,
S.
,
2017
, “
Detailed Velocity Profiles in Close-Coupled Elbows—Measurements and Computational Fluid Dynamics Predictions (RP-1682)
,”
Sci. Technol. Built Environ.
,
23
(
8
), pp.
1212
1223
.10.1080/23744731.2017.1285176
34.
Petersen
,
B. T.
,
Gorman
,
J. M.
, and
Sparrow
,
E. M.
,
2018
, “
Pressure Losses for Turbulent Flow Through Bends in Series
,”
Int. J. Fluid Mech. Res.
,
45
(
2
), pp.
105
128
.10.1615/InterJFluidMechRes.2018019615
35.
Reghunathan Valsala
,
R.
,
Son
,
S. W.
,
Suryan
,
A.
, and
Kim
,
H. D.
,
2019
, “
Study on Reduction in Pressure Losses in Pipe Bends Using Guide Vanes
,”
J. Visualization
,
22
(
4
), pp.
795
807
.10.1007/s12650-019-00561-w
36.
Karbon
,
M.
, and
Sleiti
,
A. K.
,
2020
, “
Large-Eddy Simulation of the Flow in Z-Shape Duct
,”
Cogent Eng.
,
7
(
1
), p.
1778349
.10.1080/23311916.2020.1778349
37.
Ejeh
,
C. J.
,
Alawwa
,
F. H.
,
Kofi
,
A.
, and
Ingrid
,
A.
,
2023
, “
Improving Flow Efficiency in Curved Pipes During Multi-Phase, Immiscible Fluid Flow Using Edge-Tailored Guide Vanes
,”
Exp. Comput. Multiphase Flow
,
5
(
1
), pp.
122
131
.10.1007/s42757-021-0121-7
38.
Hurtado
,
J. P.
,
Villegas
,
B.
,
Perez
,
S.
, and
Acuna
,
E.
,
2021
, “
Optimization Study of Guide Vanes for the Intake Fan-Duct Connection Using CFD
,”
Processes
,
9
(
9
), p.
1555
.10.3390/pr9091555
39.
Langwane
,
K.
, and
Subaschandar
,
N.
,
2021
, “
Numerical Prediction and Reduction of Pressure Loss of Air Flow Inside a Sharp 90 Elbow Using Turning Vanes
,”
WSEAS Trans. Fluid Mech.
,
16
(
1
), pp.
127
140
.10.37394/232013.2021.16.13
40.
Van Druenen
,
T.
,
Kabbara
,
Z.
,
Verhaert
,
I.
, and
Van Hooff
,
T.
,
2022
, “
Simplified CFD for Pressure Drop Predictions in Ducts
,”
CLIMA 2022 Conference
, Rotterdam, The Netherlands, May 22–25, pp.
1488
1495
.10.34641/clima.2022.304
41.
Wang
,
H.
,
Li
,
X.
,
Tang
,
Y.
,
Chen
,
X.
,
Shen
,
H.
,
Cao
,
X.
, and
Gao
,
H.
,
2022
, “
Simulation and Experimental Study on the Elbow Pressure Loss of Large Air Duct With Different Internal Guide Vanes
,”
Build. Serv. Eng. Res. Technol.
,
43
(
6
), pp.
725
739
.10.1177/01436244221107058
42.
Zhang
,
C.
,
Li
,
A.
,
Che
,
J.
,
Li
,
Y.
,
Liu
,
Q.
, and
Zhao
,
Y.
,
2022
, “
A Low-Resistance Elbow With a Bionic Sawtooth Guide Vane in Ventilation and Air Conditioning Systems
,”
Build. Simul.
,
15
(
1
), pp.
117
128
.10.1007/s12273-021-0782-y
You do not currently have access to this content.