Abstract

The flow resulting from the rotation of a series of thin plates that initially separate two gases of different densities is analyzed using direct numerical simulations (DNSs). The 90-deg plates' rotation forms a vorticity shear layer and a density interface in between the tips of two neighboring plates. Results of this study show that the shape of these layers strongly depends on the plate's tip-based Reynolds number that can be varied thanks to a parametrization of the plates' opening law. Different regimes are identified corresponding to single- or multimode initial interfaces, with or without the occurrence of starting vortices during the formation of the shear layer. The density interfaces resulting from this procedure are particularly well-suited to serve as initial conditions for the study of the Richtmyer–Meshkov (RM) instability-induced mixing. Results of this study also provide a description of vortex formation in stratified flows.

References

1.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
(
2
), pp.
297
319
.10.1002/cpa.3160130207
2.
Meshkov
,
E. E.
,
1972
, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,”
Fluid Dyn.
,
4
(
5
), pp.
101
104
.10.1007/BF01015969
3.
Zhou
,
Y.
,
2017
, “
Rayleigh-Taylor and Richtmyer-Meshkov Instability Induced Flow, Turbulence, and Mixing. II
,”
Phys. Rep.
,
723–725
, pp.
1
160
.10.1016/j.physrep.2017.07.008
4.
Arnett
,
D.
,
2000
, “
The Role of Mixing in Astrophysics
,”
Astrophys. J. Suppl. Ser.
,
127
(
2
), pp.
213
217
.10.1086/313364
5.
Yang
,
J.
,
Kubota
,
T.
, and
Zukoski
,
E. E.
,
1993
, “
Applications of Shock-Induced Mixing to Supersonic Combustion
,”
AIAA J.
,
31
(
5
), pp.
854
862
.10.2514/3.11696
6.
Lindl
,
J. D.
,
McCrory
,
R. L.
, and
Campbell
,
E. M.
,
1992
, “
Progress Toward Ignition and Burn Propagation in Inertial Confinement Fusion
,”
Phys. Today
,
45
(
9
), pp.
32
40
.10.1063/1.881318
7.
Vetter
,
M.
, and
Sturtevant
,
B.
,
1995
, “
Experiments on the Richtmyer-Meshkov Instability of an Air/SF6 Interface
,”
Shock Waves
,
4
(
5
), pp.
247
252
.10.1007/BF01416035
8.
Sadot
,
O.
,
Erez
,
L.
,
Alon
,
U.
,
Oron
,
D.
,
Levin
,
L. A.
,
Erez
,
G.
,
Ben-Dor
,
G.
, and
Shvarts
,
D.
,
1998
, “
Study of Nonlinear Evolution of Single-Mode and Two-Bubble Interaction Under Richtmyer-Meshkov Instability
,”
Phys. Rev. Lett.
,
80
(
8
), pp.
1654
1657
.10.1103/PhysRevLett.80.1654
9.
Mariani
,
C.
,
Vandenboomgaerde
,
M.
,
Jourdan
,
G.
,
Souffland
,
D.
, and
Houas
,
L.
,
2008
, “
Investigation of the Richtmyer-Meshkov Instability With Stereolithographed Interfaces
,”
Phys. Rev. Lett.
,
100
(
25
), p.
254503
.10.1103/PhysRevLett.100.254503
10.
Bouzgarrou
,
G.
,
Bury
,
Y.
,
Jamme
,
S.
,
Joly
,
L.
, and
Hass
,
J. F.
,
2014
, “
Laser Doppler Velocimetry Measurements in Turbulent Gaseous Mixing Induced by the Richtmyer–Meshkov Instability: Statistical Convergence Issues and Turbulence Quantification
,”
ASME J. Fluids Eng.
,
136
(
9
), p.
091209
.10.1115/1.4027311
11.
Brouillette
,
M.
, and
Sturtevant
,
B.
,
1993
, “
Experiments on the Richtmyer-Meshkov Instability: Small-Scale Perturbations on a Plane Interface
,”
Phys. Fluids A: Fluid Dyn.
,
5
(
4
), pp.
916
930
.10.1063/1.858637
12.
Bonazza
,
R.
, and
Sturtevant
,
B.
,
1996
, “
X-Ray Measurements of Growth Rates at a Gas Interface Accelerated by Shock Waves
,”
Phys. Fluids
,
8
(
9
), pp.
2496
2512
.10.1063/1.869033
13.
Prestridge
,
K.
,
Rightley
,
P. M.
,
Vorobieff
,
P.
,
Benjamin
,
R. F.
, and
Kurnit
,
N. A.
,
2000
, “
Simultaneous Density-Field Visualization and PIV of a Shock-Accelerated Gas Curtain
,”
Exp. Fluids
,
29
(
4
), pp.
339
346
.10.1007/s003489900091
14.
Weber
,
C.
,
Haehn
,
N.
,
Oakley
,
J.
,
Rothamer
,
D.
, and
Bonazza
,
R.
,
2012
, “
Turbulent Mixing Measurements in the Richtmyer-Meshkov Instability
,”
Phys. Fluids
,
24
(
7
), p.
074105
.10.1063/1.4733447
15.
Weber
,
C.
,
Haehn
,
N.
,
Oakley
,
J.
,
Rothamer
,
D.
, and
Bonazza
,
R.
,
2014
, “
An Experimental Investigation of the Turbulent Mixing Transition in the Richtmyer-Meshkov Instability
,”
J. Fluid Mech.
,
748
, pp.
457
487
.10.1017/jfm.2014.188
16.
McFarland
,
J.
,
Reilly
,
D.
,
Creel
,
S.
,
McDonald
,
C.
,
Finn
,
T.
, and
Ranjan
,
D.
,
2014
, “
Experimental Investigation of the Inclined Interface Richtmyer-Meshkov Instability Before and After Reshock
,”
Exp. Fluids
,
55
(
1
), p.
1640
.10.1007/s00348-013-1640-1
17.
Mohaghar
,
M.
,
Carter
,
J.
,
Musci
,
B.
,
Reilly
,
D.
,
McFarland
,
J.
, and
Ranjan
,
D.
,
2017
, “
Evaluation of Turbulent Mixing Transition in a Shock-Driven Variable-Density Flow
,”
J. Fluid Mech.
,
831
, pp.
779
825
.10.1017/jfm.2017.664
18.
Reese
,
D.
,
Ames
,
A.
,
Noble
,
C.
,
Oakley
,
J.
,
Rothamer
,
D.
, and
Bonazza
,
R.
,
2018
, “
Simultaneous Direct Measurements of Concentration and Velocity in the Richtmyer-Meshkov Instability
,”
J. Fluid Mech.
,
849
, pp.
541
575
.10.1017/jfm.2018.419
19.
Mohaghar
,
M.
,
Carter
,
J.
,
Pathikonda
,
G.
, and
Ranjan
,
D.
,
2019
, “
The Transition to Turbulence in Shock-Driven Mixing: Effects of Mach Number and Initial Conditions
,”
J. Fluid Mech.
,
871
, pp.
595
635
.10.1017/jfm.2019.330
20.
Graumer
,
P.
,
2019
, “
Study of the Gaseous Mixing Produced by Richtmyer-Meshkov Instability With Periodic and Weakly Diffused Initial Conditions
,” Ph.D. thesis,
Institut Supérieur de L'Aéronautique et de l'Espace, Université de Toulouse
, Toulouse, France.
21.
Bury
,
Y.
,
Graumer
,
P.
,
Jamme
,
S.
, and
Griffond
,
J.
,
2020
, “
Turbulent Transition of a Gaseous Mixing Zone Induced by the Richtmyer-Meshkov Instability
,”
Phys. Rev. Fluids
,
5
(
2
), p.
024101
.10.1103/PhysRevFluids.5.024101
22.
Boudis
,
A.
,
Bayeul-Laine
,
A.-C.
,
Benzaoui
,
A.
,
Oualli
,
H.
,
Guerri
,
O.
, and
Coutier-Delgosha
,
O.
,
2019
, “
Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil
,”
ASME J. Fluids Eng.
,
141
(
4
), p.
041106
.10.1115/1.4042175
23.
Siemens
,
2018
, “
STAR-CCM+® Documentation Version 13.04
,”
Siemens PLM Software
, Toulouse, France, accessed July 19, 2021, http://www.cd-adapco.com/products/star-ccm
24.
Benjan
,
A.
,
2013
,
Convection Heat Transfer
,
Wiley
, New York.
25.
Haller
,
G.
,
2005
, “
An Objective Definition of a Vortex
,”
J. Fluid Mech.
,
525
, pp.
1
26
.10.1017/S0022112004002526
26.
Haller
,
G.
,
2015
, “
Lagrangian Coherent Structures
,”
Annu. Rev. Fluid Mech.
,
47
(
1
), pp.
137
162
.10.1146/annurev-fluid-010313-141322
27.
Hunt
,
J. C. R.
,
1987
, “
Vorticity and Vortex Dynamics in Complex Turbulent Flows
,”
Trans. Can. Soc. Mech. Eng.
,
11
(
1
), pp.
21
35
.10.1139/tcsme-1987-0004
28.
Zhang
,
S.
, and
Choudhury
,
D.
,
2006
, “
Eigen Helicity Density: A New Vortex Identification Scheme and Its Application in Accelerated Inhomogeneous Flows
,”
Phys. Fluids
,
18
(
5
), p.
058104
.10.1063/1.2187071
29.
Onu
,
K.
,
Huhn
,
F.
, and
Haller
,
G.
,
2015
, “
LCS Tool: A Computational Platform for Lagrangian Coherent Structures
,”
J. Comput. Sci.
,
7
, pp.
26
36
.10.1016/j.jocs.2014.12.002
30.
David
,
M. J.
,
Mathur
,
M.
,
Govardhan
,
R. N.
, and
Arakeri
,
J. H.
,
2018
, “
The Kinematic Genesis of Vortex Formation Due to Finite Rotation of a Plate in Still Fluid
,”
J. Fluid Mech.
,
839
, pp.
489
524
.10.1017/jfm.2017.908
31.
Huang
,
Y.
, and
Green
,
M. A.
,
2015
, “
Detection and Tracking of Vortex Phenomena Using Lagrangian Coherent Structures
,”
Exp. Fluids
,
56
(
7
), p.
147
.10.1007/s00348-015-2001-z
32.
Haller
,
G.
, and
Beron-Vera
,
F.
,
2013
, “
Coherent Lagrangian Vortices: The Black Holes of Turbulence
,”
J. Fluid Mech.
,
731
, p.
R4
.10.1017/jfm.2013.391
33.
Bury
,
Y.
,
Jardin
,
T.
, and
Klöckner
,
A.
,
2013
, “
Experimental Investigation of the Vortical Activity in the Close Wake of a Simplified Military Transport Aircraft
,”
Exp. Fluids
,
54
(
5
), p.
1524
.10.1007/s00348-013-1524-4
34.
Leal
,
L. G.
,
1992
,
Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis
,
Butterworth-Heinemann
,
Boston, MA
.
35.
Meunier
,
P.
, and
Leweke
,
T.
,
2001
, “
Three-Dimensional Instability During Vortex Merging
,”
Phys. Fluids
,
13
(
10
), pp.
2747
2750
.10.1063/1.1399033
36.
Meunier
,
P.
, and
Leweke
,
T.
,
2005
, “
Elliptic Instability of a Co-Rotating Vortex Pair
,”
J. Fluid Mech.
,
533
, pp.
125
159
.10.1017/S0022112005004325
37.
Rossow
,
V. J.
,
1977
, “
Convective Merging of Vortex Cores in Lift Generated Wakes
,”
J. Aircr.
,
14
(
3
), pp.
283
290
.10.2514/3.58772
38.
Le Dizes
,
S.
, and
Verga
,
A.
,
2002
, “
Viscous Interactions of Two Co-Rotating Vortices Before Merging
,”
J. Fluid Mech.
,
467
, pp.
389
410
.10.1017/S0022112002001532
39.
Brandt
,
L. K.
, and
Nomura
,
K. K.
,
2010
, “
Characterization of the Interactions of Two Unequal Co-Rotating Vortices
,”
J. Fluid Mech.
,
646
, pp.
233
253
.10.1017/S0022112009992849
40.
Folz
,
P.
, and
Nomura
,
K. K.
,
2017
, “
A Quantitative Assessment of Viscous Asymmetric Vortex Pair Interactions
,”
J. Fluid Mech.
,
829
, pp.
1
30
.10.1017/jfm.2017.527
41.
Cerretelli
,
C.
, and
Williamson
,
C.
,
2003
, “
The Physical Mechanism for Vortex Merging
,”
J. Fluid Mech.
,
475
, pp.
41
77
.10.1017/S0022112002002847
42.
Brandt
,
L. K.
, and
Nomura
,
K. K.
,
2007
, “
The Physics of Vortex Merger and the Effects of Ambient Stable Stratification
,”
J. Fluid Mech.
,
592
, pp.
413
446
.10.1017/S0022112007008671
43.
Melander
,
M. V.
,
McWilliams
,
J. C.
, and
Zabusky
,
N. J.
,
1987
, “
Axisymmetrization and Vorticity-Gradient Intensification of an Isolated Two-Dimensional Vortex Through Filamentation
,”
J. Fluid Mech.
,
178
, pp.
137
159
.10.1017/S0022112087001150
You do not currently have access to this content.