Abstract

Trimming the impeller diameter of a centrifugal pump is the easiest and most economical way to adjust its efficient operating range based on its original performance. Three impellers obtained by trimming the diameter are investigated. Energy performance, internal flow field, and entropy production analysis have been discussed in different cases. The results show that trimming the impeller diameter causes a great change in the energy performance of centrifugal pumps. The turbulent kinetic energy (TKE) distribution and entropy production also change significantly. The best efficiency point (BEP) shifts to low flowrate with trimming impeller diameter. The BEP shift rate was 6.67% and 20% for trimming amounts of 5.15% and 10.29%, respectively. As the impeller diameter decreases, the backflow phenomenon that occurs at the diffuser inlet at low flowrate improves. The ratio of mechanical energy to kinetic energy and pressure energy is not constant for pumps with different impeller diameters. The energy performance changes are mainly caused by flow changes inside the impeller, chamber, and diffuser. The results could be referred to as the design and selection of centrifugal pumps.

References

1.
Adekoya
,
O. B.
,
Oliyide
,
J. A.
, and
Fasanya
,
I. O.
,
2022
, “
Renewable and Non-Renewable Energy Consumption–Ecological Footprint Nexus in Net-Oil Exporting and Net-Oil Importing Countries: Policy Implications for a Sustainable Environment
,”
Renew. Energy
,
189
, pp.
524
534
.10.1016/j.renene.2022.03.036
2.
Huang
,
R.
,
Zhang
,
Z.
,
Zhang
,
W.
,
Mou
,
J.
,
Zhou
,
P.
, and
Wang
,
Y.
,
2020
, “
Energy Performance Prediction of the Centrifugal Pumps by Using a Hybrid Neural Network
,”
Energy
,
213
, p.
119005
.10.1016/j.energy.2020.119005
3.
Qin
,
Y.
,
Li
,
D.
,
Wang
,
H.
,
Liu
,
Z.
,
Wei
,
X.
, and
Wang
,
X.
,
2022
, “
Multi-Objective Optimization Design on High Pressure Side of a Pump-Turbine Runner With High Efficiency
,”
Renew. Energy
,
190
, pp.
103
120
.10.1016/j.renene.2022.03.085
4.
Ji
,
L.
,
Li
,
W.
,
Shi
,
W.
, and
Agarwal
,
R. K.
,
2021
, “
Application of Wray–Agarwal Turbulence Model in Flow Simulation of a Centrifugal Pump With Semispiral Suction Chamber
,”
ASME J. Fluids Eng.
,
143
(
3
), p.
031203
.10.1115/1.4049050
5.
Chen
,
B.
,
Li
,
X.
, and
Zhu
,
Z.
,
2022
, “
Investigations of Energy Distribution and Loss Characterization in a Centrifugal Impeller Through PIV Experiment
,”
Ocean Eng.
,
247
, p.
110773
.10.1016/j.oceaneng.2022.110773
6.
Capurso
,
T.
,
Bergamini
,
L.
, and
Torresi
,
M.
,
2022
, “
Performance Analysis of Double Suction Centrifugal Pumps With a Novel Impeller Configuration
,”
Energy Convers. Manage. X
,
14
, p.
100227
.
7.
Shim
,
H. S.
, and
Kim
,
K. Y.
,
2020
, “
Design Optimization of the Impeller and Volute of a Centrifugal Pump to Improve the Hydraulic Performance and Flow Stability
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
101211
.10.1115/1.4047539
8.
Zhang
,
N.
,
Gao
,
B.
,
Li
,
Z.
,
Ni
,
D.
, and
Jiang
,
Q.
,
2018
, “
Unsteady Flow Structure and Its Evolution in a Low Specific Speed Centrifugal Pump Measured by PIV
,”
Exp. Therm. Fluid Sci.
,
97
, pp.
133
144
.10.1016/j.expthermflusci.2018.04.013
9.
Cubas
,
J. M.
,
Stel
,
H.
,
Ofuchi
,
E. M.
,
Neto
,
M. A. M.
, and
Morales
,
R. E.
,
2020
, “
Visualization of Two-Phase Gas-Liquid Flow in a Radial Centrifugal Pump With a Vaned Diffuser
,”
J. Petrol. Sci. Eng.
,
187
, p.
106848
.10.1016/j.petrol.2019.106848
10.
El-Emam
,
M. A.
,
Zhou
,
L.
,
Yasser
,
E.
,
Bai
,
L.
, and
Shi
,
W.
,
2022
, “
Computational Methods of Erosion Wear in Centrifugal Pump: A State-of-the-Art Review
,”
Arch. Comput. Method E
,
29
(
6
), pp.
3789
3814
.10.1007/s11831-022-09714-x
11.
Li
,
X.
,
Chen
,
B.
,
Luo
,
X.
, and
Zhu
,
Z.
,
2020
, “
Effects of Flow Pattern on Hydraulic Performance and Energy Conversion Characterisation in a Centrifugal Pump
,”
Renew. Energy
,
151
, pp.
475
487
.10.1016/j.renene.2019.11.049
12.
He
,
D.
,
Zhao
,
L.
,
Chang
,
Z.
,
Zhang
,
Z.
,
Guo
,
P.
, and
Bai
,
B.
,
2021
, “
On the Performance of a Centrifugal Pump Under Bubble Inflow: Effect of Gas-Liquid Distribution in the Impeller
,”
J. Petrol. Sci. Eng.
,
203
, p.
108587
.10.1016/j.petrol.2021.108587
13.
Lin
,
Y.
,
Li
,
X.
,
Zhu
,
Z.
,
Wang
,
X.
,
Lin
,
T.
, and
Cao
,
H.
,
2022
, “
An Energy Consumption Improvement Method for Centrifugal Pump Based on Bionic Optimization of Blade Trailing Edge
,”
Energy
,
246
, p.
123323
.10.1016/j.energy.2022.123323
14.
Yang
,
Y.
,
Zhou
,
L.
,
Hang
,
J.
,
Du
,
D.
,
Shi
,
W.
, and
He
,
Z.
,
2021
, “
Energy Characteristics and Optimal Design of Diffuser Meridian in an Electrical Submersible Pump
,”
Renewable Energy
,
167
, pp.
718
727
.10.1016/j.renene.2020.11.143
15.
Bai
,
L.
,
Yang
,
Y.
,
Zhou
,
L.
,
Li
,
Y.
,
Xiao
,
Y.
, and
Shi
,
W.
,
2022
, “
Optimal Design and Performance Improvement of an Electric Submersible Pump Impeller Based on Taguchi Approach
,”
Energy
,
252
, p.
124032
.10.1016/j.energy.2022.124032
16.
Elyamin
,
G. R. A.
,
Bassily
,
M. A.
,
Khalil
,
K. Y.
, and
Gomaa
,
M. S.
,
2019
, “
Effect of Impeller Blades Number on the Performance of a Centrifugal Pump
,”
Alex. Eng. J.
,
58
(
1
), pp.
39
48
.10.1016/j.aej.2019.02.004
17.
Wang
,
T.
,
Kong
,
F.
,
Xia
,
B.
,
Bai
,
Y.
, and
Wang
,
C.
,
2017
, “
The Method for Determining Blade Inlet Angle of Special Impeller Using in Turbine Mode of Centrifugal Pump as Turbine
,”
Renewable Energy
,
109
, pp.
518
528
.10.1016/j.renene.2017.03.054
18.
Matlakala
,
M. E.
,
Kallon
,
D. V. V.
,
Mogapi
,
K. E.
,
Mabelane
,
I. M.
, and
Makgopa
,
D. M.
,
2019
, “
Influence of Impeller Diameter on the Performance of Centrifugal Pumps
,”
Mat. Sci. Eng.
,
655
(
1
), p.
012009
.10.1088/1757-899X/655/1/012009
19.
Šavar
,
M.
,
Kozmar
,
H.
, and
Sutlović
,
I.
,
2009
, “
Improving Centrifugal Pump Efficiency by Impeller Trimming
,”
Desalination
,
249
(
2
), pp.
654
659
.10.1016/j.desal.2008.11.018
20.
Luo
,
X.
,
Zhang
,
Y.
,
Peng
,
J.
,
Xu
,
H.
, and
Yu
,
W.
,
2008
, “
Impeller Inlet Geometry Effect on Performance Improvement for Centrifugal Pumps
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1971
1976
.10.1007/s12206-008-0741-x
21.
Ye
,
W.
,
Geng
,
C.
,
Ikuta
,
A.
,
Hachinota
,
S.
,
Miyagawa
,
K.
, and
Luo
,
X.
,
2021
, “
Investigation on the Impeller-Diffuser Interaction on the Unstable Flow in a Mixed-Flow Pump Using a Modified Partially Averaged Navier-Stokes Model
,”
Ocean Eng.
,
238
, p.
109756
.10.1016/j.oceaneng.2021.109756
22.
Song
,
W. W.
,
Wei
,
L. C.
,
Fu
,
J.
,
Shi
,
J. W.
,
Yang
,
X. X.
, and
Xu
,
Q. Y.
,
2017
, “
Analysis and Control of Flow at Suction Connection in High-Speed Centrifugal Pump
,”
Adv. Mech. Eng.
,
9
(
1
), pp.
1
12
.10.1177/1687814016685293
23.
Asim
,
T.
, and
Mishra
,
R.
,
2017
, “
Large-Eddy-Simulation-Based Analysis of Complex Flow Structures Within the Volute of a Vaneless Centrifugal Pump
,”
Sādhanā
,
42
(
4
), pp.
505
516
.10.1007/s12046-017-0623-y
24.
Ji
,
L.
,
Li
,
W.
,
Shi
,
W.
,
Tian
,
F.
, and
Agarwal
,
R.
,
2020
, “
Diagnosis of Internal Energy Characteristics of Mixed-Flow Pump Within Stall Region Based on Entropy Production Analysis Model
,”
Int. Commun. Heat Mass
,
117
, p.
104784
.10.1016/j.icheatmasstransfer.2020.104784
25.
Hou
,
H.
,
Zhang
,
Y.
,
Zhou
,
X.
,
Zuo
,
Z.
, and
Chen
,
H.
,
2019
, “
Optimal Hydraulic Design of an Ultra-Low Specific Speed Centrifugal Pump Based on the Local Entropy Production Theory
,”
Proc. Inst. Mech. Eng. A J. Power Energy
,
233
(
6
), pp.
715
726
.10.1177/0957650918825408
26.
Yang
,
Y.
,
Zhou
,
L.
,
Bai
,
L.
,
Xu
,
H.
,
Lv
,
W.
,
Shi
,
W.
, and
Wang
,
H.
,
2022
, “
Numerical Investigation of Tip Clearance Effects on the Performance and Flow Pattern Within a Sewage Pump
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
81202
.10.1115/1.4053649
27.
Han
,
Y.
,
Zhou
,
L.
,
Bai
,
L.
,
Shi
,
W.
, and
Agarwal
,
R.
,
2021
, “
Comparison and Validation of Various Turbulence Models for U-Bend Flow With a Magnetic Resonance Velocimetry Experiment
,”
Phys. Fluids
,
33
(
12
), p.
125117
.10.1063/5.0073910
28.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H. W.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
29.
Li
,
D.
,
Wang
,
H.
,
Qin
,
Y.
,
Li
,
Z.
,
Wei
,
X.
, and
Qin
,
D.
,
2018
, “
Mechanism of High Amplitude Low Frequency Fluctuations in a Pump-Turbine in Pump Mode
,”
Renewable Energy
,
126
, pp.
668
680
.10.1016/j.renene.2018.03.080
30.
Li
,
W.
,
Li
,
E.
,
Ji
,
L.
,
Zhou
,
L.
,
Shi
,
W.
, and
Zhu
,
Y.
,
2020
, “
Mechanism and Propagation Characteristics of Rotating Stall in a Mixed-Flow Pump
,”
Renewable Energy
,
153
, pp.
74
92
.10.1016/j.renene.2020.02.003
31.
Shi
,
F.
, and
Tsukamoto
,
H.
,
2001
, “
Numerical Study of Pressure Fluctuations Caused by Impeller-Diffuser Interaction in a Diffuser Pump Stage
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
466
474
.10.1115/1.1385835
32.
Chang
,
H.
,
Shi
,
W.
,
Li
,
W.
, and
Liu
,
J.
,
2019
, “
Energy Loss Analysis of Novel Self-Priming Pump Based on the Entropy Production Theory
,”
J. Therm. Sci.
,
28
(
2
), pp.
306
318
.10.1007/s11630-018-1057-5
33.
Zhou
,
L.
,
Hang
,
J.
,
Bai
,
L.
,
Krzemianowski
,
Z.
,
El-Emam
,
M. A.
,
Yasser
,
E.
, and
Agarwal
,
R.
,
2022
, “
Application of Entropy Production Theory for Energy Losses and Other Investigation in Pumps and Turbines: A Review
,”
Appl. Energy
,
318
, p.
119211
.10.1016/j.apenergy.2022.119211
34.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A High-Reynolds Number Model With Wall Functions
,”
Int. Commun. Heat Mass
,
47
(
10–11
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
35.
Mathieu
,
J.
, and
Scott
,
J.
,
2000
,
An Introduction to Turbulent Flow
,
Cambridge University Press
, New York.
36.
Pumps
,
R.
,
1999
, “
Rotodynamic Pumps–Hydraulic Performance Acceptance Tests–Grades 1 and 2
,” ISO, Geneva, Switzerland, Standard No. 9906, p.
2007
.
37.
Gülich
,
J. F.
,
2008
,
Centrifugal Pumps
,
Springer
,
Berlin, Germany
.
38.
Pumps
,
S.
,
2010
,
Centrifugal Pump Handbook
,
Butterworth-Heinemann
, Winterthur, Switzerland.
39.
Stepanoff
,
A. J.
, and
Haltmeier
,
A.
,
2013
,
Radial-Und Axialpumpen: Theorie, Entwurf, Anwendung
,
Springer-Verlag
, Berlin, Germany.
You do not currently have access to this content.