Abstract

Acoustic resonances in internal flows can cause noise, vibration, and even equipment damage. One geometry prone to acoustic resonance is a deadleg at the point where the main flow turns into a side branch. Here, we report experimental and computational fluid dynamics (CFD) studies of flow-generated pulsation in such a geometry over a wide range of mean flow velocities. Experimental results of the normalized pulsation pressure amplitudes (P*) versus Strouhal number characterized the flow–acoustic field for acoustically tuned and detuned systems and for branch to main pipe diameter ratio of 1.0. The unsteady CFD simulations revealed the characteristic volume integral of the cross-product of the vorticity field and the velocity field (ω×U)in the vicinity of the T-junction which helped in quantifying the acoustic source power for different conditions. In addition, the cross-product (ω×U)in the direction along the main line is almost exactly out of phase with the acoustic velocity at the T-junction. The pressure amplitude at the closed end of the deadleg reaches maximum when two conditions are met: (i) the system overall acoustic resonance frequency matches closely the frequency of the oscillating component of the cross-product (ω×U)characterized by a Strouhal number and (ii) the deadleg length is tuned to an odd number of ¼ wavelength of this frequency such that maximum acoustic velocity is reached at the T-junction. Synchronized images generated from the unsteady CFD simulations revealed valuable insight into the velocity and vorticity field in the region of the T-junction in support of Howe's acoustic source power equation.

References

1.
Jungowski
,
W. M.
,
Botros
,
K. K.
, and
Studzinski
,
W.
,
1989
, “
Cylindrical Side-Branch as Tone Generator
,”
J. Sound Vib.
,
131
(
2
), pp.
265
285
.10.1016/0022-460X(89)90492-6
2.
Jungowski
,
W. E.
, and
Studzinski
,
W.
,
1989
, U.S. Patent No. 4,867,190.
3.
Coffman
,
J. T.
, and
Bernstein
,
M. D.
,
1980
, “
Failure of Safety Valves Due to Flow Induced Vibration
,”
ASME J. Pressure Vessel Technol.
,
102
(
1
), pp.
112
118
.10.1115/1.3263289
4.
Chen
,
Y. N.
, and
Florjancic
,
D.
,
1975
, “
Vortex-Induced Resonance in a Pipe System Due to Branching
,”
Proceedings on Vibration and Noise in Pump, Fan, and Compressor Installations
,
Institution of Mechanical Engineers, University of Southampton
, Southampton, UK, Sept. 16-18, pp.
69
78
.
5.
Ziada
,
S.
, and
Buehlmann
,
E. T.
,
1991
, “
Flow-Induced Vibrations in Long Corrugated Pipes
,”
Proceedings of International Conference on Flow-Induced Vibrations
,
Institution of Mechanical Engineers
, Brighton, UK, May 19–21, pp.
417
426
.
6.
Ziada
,
S.
,
Bühlmann
,
E. T.
, and
Bolleter
,
U.
,
1989
, “
Flow Impingement as an Excitation Source in Control Valves
,”
J. Fluids Struct.
,
3
(
5
), pp.
529
549
.10.1016/S0889-9746(89)80029-5
7.
Lafon
,
P.
,
Caillaud
,
S.
,
Devos
,
J. P.
, and
Lambert
,
C.
,
2003
, “
Aeroacoustical Coupling in a Ducted Shallow Cavity and Fluid/Structure Effects on a Steam Line
,”
J. Fluids Struct.
,
18
(
6
), pp.
695
713
.10.1016/j.jfluidstructs.2003.08.018
8.
Smith
,
B. A.
, and
Luloff
,
B. V.
,
2000
, “
The Effect of Seat Geometry on Gate Valve Noise
,”
ASME J. Pressure Vessel Technol.
,
122
(
4
), pp.
401
407
.10.1115/1.1286031
9.
Baldwin
,
R. M.
, and
Simmons
,
H. R.
,
1986
, “
Flow-Induced Vibration in Safety Relief Valves
,”
ASME J. Pressure Vessel Technol.
,
108
(
3
), pp.
267
272
.10.1115/1.3264785
10.
Chen
,
Y. N.
, and
Steurchler
,
R.
,
1977
, “
Flow-Induced Vibrations and Noise in the Pipe System With Blind Branches Due to Coupling of Vortex Shedding
,”
Internoise 77
, Zurich, Switzerland, Mar. 1–3, pp. B189-B203.
11.
Gillessen
,
R.
, and
Roller
,
W.
,
1989
, “
Reduction and Elimination of Vibration of Piping Systems
,”
Minderung von Rohrleitungsschwingungen
(VDI Berichte, Vol.
748
),
VDI Verlag
,
Düsseldorf, Germany
.
12.
Ziada
,
S.
, and
Bühlmann
,
E. T.
,
1992
, “
Self-Excited Resonances of Two Side-Branches in Close Proximity
,”
J. Fluids Struct.
,
6
(
5
), pp.
583
601
.10.1016/0889-9746(92)90020-4
13.
Ziada
,
S.
,
1993
, “
Flow-Excited Resonances of Piping Systems Containing Side-Branches: Excitation Mechanism, Counter-Measures and Design Guide-Lines
,”
Seminar on Acoustic Pulsations in Rotating Machinery
, Toronto, ON, Canada, Apr. 23–25, pp.
1
34
.
14.
Ziada
,
S.
,
2010
, “
Flow-Excited Acoustic Resonance in Industry
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p.
015001
.10.1115/1.4000379
15.
Parker
,
R.
, and
Pryce
,
D. C.
,
1974
, “
Wake Excited Resonances in an Annular Cascade: An Experimental Investigation
,”
J. Sound Vib.
,
37
(
2
), pp.
247
261
.10.1016/S0022-460X(74)80331-7
16.
Ziada
,
S.
,
Oengören
,
A.
, and
Vogel
,
A.
,
2002
, “
Acoustic Resonance in the Inlet Scroll of a Turbo-Compressor
,”
J. Fluids Struct.
,
16
(
3
), pp.
361
373
.10.1006/jfls.2001.0421
17.
Fitzpatrick
,
J. A.
,
1985
, “
The Prediction of Flow-Induced Noise in Heat Exchanger Tube Arrays
,”
J. Sound Vib.
,
99
(
3
), pp.
425
435
.10.1016/0022-460X(85)90379-7
18.
Blevins
,
R. D.
, and
Bressler
,
M. M.
,
1993
, “
Experiments on Acoustic Resonance in Heat Exchanger Tube Bundles
,”
J. Sound Vib.
,
164
(
3
), pp.
503
533
.10.1006/jsvi.1993.1231
19.
Ziada
,
S.
,
Oengören
,
A.
, and
Bühlmann
,
E. T.
,
1989
, “
On Acoustical Resonance in Tube Arrays Part I: Experiments
,”
J. Fluids Struct.
,
3
(
3
), pp.
293
314
.10.1016/S0889-9746(89)90083-2
20.
McGrath
,
S.
, and
Shaw
,
L.
,
1996
, “
Active Control of Shallow Cavity Acoustic Resonance
,”
AIAA
Paper No. 96-1949.10.2514/6.1996-1949
21.
Kook
,
H.
,
Mongeau
,
L.
,
Brown
,
D. V.
, and
Zorea
,
S.
,
1997
, “
Analysis of the Interior Pressure Oscillations Induced by Flow Over Vehicle Openings
,”
Noise Control Eng. J.
,
45
(
6
), pp.
223
234
.10.3397/1.2828444
22.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1978
, “
Review—Self-Sustaining Oscillations of Flow Past Cavities
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
152
165
.10.1115/1.3448624
23.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1979
, “
Self-Sustained Oscillations of Impinging Free Shear Layers
,”
Annu. Rev. Fluid Mech.
,
11
(
1
), pp.
67
94
.10.1146/annurev.fl.11.010179.000435
24.
Rockwell
,
D.
,
1983
, “
Oscillations of Impinging Shear Layers
,”
AIAA J.
,
21
(
5
), pp.
645
664
.10.2514/3.8130
25.
Tonon
,
D.
,
Hirschberg
,
A.
,
Golliard
,
J.
, and
Ziada
,
S.
,
2011
, “
Aeroacoustics of Pipe Systems With Closed Branches
,”
Int. J. Aeroacoust.
,
10
(
2–3
), pp.
201
276
.10.1260/1475-472X.10.2-3.201
26.
Howe
,
M. S.
,
1980
, “
The Dissipation of Sound at an Edge
,”
J. Sound Vib.
,
70
(
3
), pp.
407
411
.10.1016/0022-460X(80)90308-9
27.
Howe
,
M. S.
,
1998
,
Acoustics of Fluid-Structure Interactions
,
Cambridge University
,
Cambridge, UK
.
28.
Bruggeman
,
J. C.
,
Hirschberg
,
A.
,
van Dongen
,
M. E. H.
,
Wijnands
,
A. P. J.
, and
Gorter
,
J.
,
1989
, “
Flow Induced Pulsations in Gas Transport Systems: Analysis of the Influence of Closed Side Branches
,”
ASME J. Fluids Eng.
,
111
(
4
), pp.
484
491
.10.1115/1.3243672
29.
Bruggeman
,
J. C.
,
Hirschberg
,
A.
,
van Dongen
,
M. E. H.
,
Wijnands
,
A. P. J.
, and
Gorter
,
J.
,
1991
, “
Self-Sustained Aero-Acoustic Pulsations in Gas Transport Systems: Experimental Study of the Influence of Closed Side Branches
,”
J. Sound Vib.
,
150
(
3
), pp.
371
393
.10.1016/0022-460X(91)90893-O
30.
Ziada
,
S.
,
Scott
,
A.
, and
Arthurs
,
D.
,
2007
, “
Acoustic Excitation by Flow in T-Junctions
,”
ASME J. Pressure Vessel Technol.
,
129
(
1
), pp.
14
20
.10.1115/1.2388995
31.
Munjal
,
M. L.
,
2014
,
Acoustics of Ducts and Mufflers
,
Wiley
, New York.
32.
Botros
,
K. K.
, and
Van Hardeveld
,
T.
,
2018
,
Pipeline Pumping and Compression Systems: A Practical Approach
, 3rd ed.,
ASME Press
, New York, Chap.
11
.
33.
ANSYS Inc.
,
2020
,
ANSYS Fluent User Guide, Release 2020R2
,
ANSYS Inc
.,
Cannonsburg, PA
.
34.
LiuYi
,
J.
,
Hong
,
Z.
, and
QingQuan
,
D.
,
2018
, “
Numerical Simulation of Acoustic Resonance in Closed Side Branch With Different Cross-Section Shapes
,”
ASME
Paper No. IPC2018-78459.10.1115/IPC2018-78459
35.
Mentor
,
F. R.
,
2019
,
Best Practice: Scale-Resolving Simulations in ANSYS CFD, Version 2.00
,
ANSYS Inc. Customer Support Portal
, Canonsburg, PA.
36.
Selamet
,
A.
,
Ji
,
Z. L.
, and
Kach
,
R. A.
,
2001
, “
Wave Reflections From Duct Terminations
,”
J. Acoust. Soc. Am.
,
109
(
4
), pp.
1304
1311
.10.1121/1.1348298
37.
Larsson
,
J.
,
Davidson
,
L.
,
Olsson
,
M.
, and
Eriksson
,
L. E.
,
2004
, “
Aeroacoustic Investigation of an Open Cavity at Low Mach Number
,”
AIAA J.
,
42
(
12
), pp.
2462
2473
.10.2514/1.1339
38.
Haigermoser
,
C.
,
2009
, “
Application of an Acoustic Analogy to PIV Data From Rectangular Cavity Flows
,”
Exp. Fluids
,
47
(
1
), pp.
145
157
.10.1007/s00348-009-0642-5
39.
Liu
,
X.
, and
Katz
,
J.
,
2013
, “
Vortex-Corner Interactions in a Cavity Shear Layer Elucidated by Time-Resolved Measurements of the Pressure Field
,”
J. Fluid Mech.
,
728
, pp.
417
457
.10.1017/jfm.2013.275
40.
Botros
,
K. K.
, and
Satish
,
H.
,
2021
, “
Measurements of Pulsations Generated Due to Turning Flow Into Side Branches of Different Diameter Ratios
,”
ASME
Paper No. IMECE2021-69111.10.1115/IMECE2021-69111
You do not currently have access to this content.