Abstract

Computational fluid dynamics results for synthetic turbulence generation of freestream turbulence by a proposed statistically targeted forcing (STF) method are presented. The STF method has been previously documented for homogeneous isotropic and anisotropic turbulence and formulated to introduce a fluctuating velocity field with a distribution of first and second moments that match a user-specified target mean velocity and Reynolds stress tensor, by incorporating deterministic time-dependent forcing terms into the momentum equation for the resolved flow. This study extends its applicability to generation of freestream turbulence in scale-resolving simulations in which flow is spatially developing. The method provides flexibility in regions where synthetic turbulence needs to be generated or damped, for use in engineering level scale-resolving simulations such as large eddy simulation (LES), and hybrid Reynolds-averaged Navier–Stokes (RANS)-LES. The objective of this study is to evaluate the performance of the proposed STF method in simulations that incorporate monotonically integrated LES (MILES), Smagorinsky (SMAG) LES subgrid stress model, and dynamic hybrid RANS-LES (DHRL) model in reproducing inflow freestream turbulent flow, and the capability of each model to reproduce proper energy decay characteristics downstream of forcing. Results are inter-rogated and compared to target statistical velocity and turbulent stress distributions for inflow turbulence and evaluated in terms of energy spectra. Analysis of the influence of STF model parameters, mesh resolution, and LES subgrid stress model on the results is investigated. Results show that the STF method can successfully reproduce desired statistical distributions in a nearly isotropic freestream turbulent flow.

References

1.
Dhamankar
,
N. S.
,
Blaisdell
,
G. A.
, and
Lyrintzis
,
A. S.
,
2015
, “
An Overview of Turbulent Inflow Boundary Conditions for Large Eddy Simulations
,”
AIAA
Paper No.
2015
3213
.10.2514/6.2015-3213
2.
Morgan
,
B.
,
Larsson
,
J.
,
Kawai
,
S.
, and
Lele
,
S. K.
,
2011
, “
Improving Low-Frequency Characteristics of Recycling/Rescaling Inflow Turbulence Generation
,”
AIAA J.
,
49
(
3
), pp.
582
97
.10.2514/1.J050705
3.
Wu
,
X.
,
2017
, “
Inflow Turbulence Generation Methods
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
23
49
.10.1146/annurev-fluid-010816-060322
4.
Spalart
,
P. R.
, and
Watmuff
,
J. H.
,
1993
, “
Experimental and Numerical Study of a Turbulent Boundary Layer With Pressure Gradients
,”
J. Fluid Mech.
,
249
(
1
), pp.
337
371
.10.1017/S002211209300120X
5.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comp. Phys.
,
140
(
2
), pp.
233
258
.10.1006/jcph.1998.5882
6.
Spalart
,
P. R.
,
Strelets
,
M.
, and
Travin
,
A.
,
2006
, “
Direct Numerical Simulation of Large-Eddy-Break-Up Devices in a Boundary Layer
,”
Int. J. Heat Fluid Flow
,
27
(
5
), pp.
902
910
.10.1016/j.ijheatfluidflow.2006.03.014
7.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2011
, “
A Rapid and Accurate Switch From RANS to LES in Boundary Layers Using an Overlap Region
,”
Flow Turbul. Combust.
,
86
(
2
), pp.
179
206
.10.1007/s10494-010-9309-9
8.
Araya
,
G.
,
Castillo
,
L.
,
Meneveau
,
C.
, and
Jansen
,
K.
,
2011
, “
A Dynamic Multi-Scale Approach for Turbulent Inflow Boundary Conditions in Spatially Developing Flows
,”
J. Fluid Mech.
,
670
, pp.
581
605
.10.1017/S0022112010005616
9.
Schlüter
,
J. U.
,
Pitsch
,
H.
, and
Moin
,
P.
,
2005
, “
Outflow Conditions for Integrated Large Eddy Simulation/Reynolds-Averaged Navier–Stokes Simulations
,”
AIAA J
,.,
43
(
1
), pp.
156
164
.10.2514/1.11007
10.
Kraichnan
,
R. H.
,
1970
, “
Diffusion by a Random Velocity Field
,”
Phys. Fluids
,
13
(
1
), pp.
22
31
.10.1063/1.1692799
11.
Rogallo
,
R.
,
1981
, “
Numerical Experiments in Homogeneous Turbulence
,” NASA Technical Memorandum 81315, Moffett Field, Mountain View, CA.
12.
Orszag
,
S.
, and
Patterson
,
G.
,
1972
, “
Numerical Simulation of Three-Dimensional Homogeneous Isotropic Turbulence
,”
Phys. Rev. Lett.
,
28
(
2
), pp.
76
79
.10.1103/PhysRevLett.28.76
13.
Lee
,
S.
,
Lele
,
S.
, and
Moin
,
P.
,
1992
, “
Simulation of Spatially Evolving Compressible Turbulence and the Application of Taylor's Hypothesis
,”
Phys. Fluids
,
4
(
7
), pp.
1521
1530
.10.1063/1.858425
14.
Lundgren
,
T. S.
,
2003
, “
Linearly Forced Isotropic Turbulence
,”
Annual Research Briefs
,
Center for Turbulence Research
,
Stanford, CA
, p.
461
.
15.
Rosales
,
C.
, and
Meneveau
,
C.
,
2005
, “
Linear Forcing in Numerical Simulations of Isotropic Turbulence: Physical Space Implementations and Convergence Properties
,”
Phys. Fluids
,
17
(
9
), p.
095106
.10.1063/1.2047568
16.
Klein
,
M.
,
Chakraborty
,
N.
, and
Ketterl
,
S.
,
2017
, “
A Comparison of Strategies for Direct Numerical Simulation of Turbulence Chemistry Interaction in Generic Planar Turbulent Premixed Flames
,”
Flow Turbul. Combust.
,
99
(
3–4
), pp.
955
971
.10.1007/s10494-017-9843-9
17.
Jarrin
,
N.
,
Prosser
,
R.
,
Uribe
,
J. C.
,
Benhamadouche
,
S.
, and
Laurence
,
D.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
.10.1016/j.ijheatfluidflow.2006.02.006
18.
Jarrin
,
N.
,
Prosser
,
R.
,
Uribe
,
J. C.
,
Benhamadouche
,
S.
, and
Laurence
,
D.
,
2009
, “
Reconstruction of Turbulent Fluctuations for Hybrid RANS/LES Simulations Using a Synthetic-Eddy Method
,”
Int. J. Heat Fluid Flow
,
30
(
3
), pp.
435
442
.10.1016/j.ijheatfluidflow.2009.02.016
19.
Keating
,
A.
,
Piomelli
,
U.
,
Balaras
,
E.
, and
Kaltenbach
,
H.-J.
,
2004
, “
A Priori and a Posteriori Tests of Inflow Conditions for Large Eddy Simulation
,”
Phys. Fluids (1994-Present)
,
16
(
12
), pp.
4696
4712
.10.1063/1.1811672
20.
Spille-Kohoff
,
A.
, and
Kaltenbach
,
H.-J.
,
2001
, “
Generation of Turbulent Inflow Data With a Prescribed Shear-Stress Profile
,”
DNS/LES Progress and Challenges, Proceedings of the Third AFOSR International Conference on DNS/LES
,
Liu
,
C.
,
Sakell
,
L.
, and
Beutner
,
T.
eds.,
Greyden Press
,
Columbus
, pp.
319
326
.
21.
Schmidt
,
S.
, and
Breuer
,
M.
,
2017
, “
Source Term Based Synthetic Turbulence Inflow Generator for Eddy-Resolving Predictions of an Airfoil Flow Including a Laminar Separation Bubble
,”
Comput. Fluids
,
146
, pp.
1
22
.10.1016/j.compfluid.2016.12.023
22.
De Laage de Meux
,
B.
,
Audebert
,
B.
,
Manceau
,
R.
, and
Perrin
,
R.
,
2015
, “
Anisotropic Linear Forcing for Synthetic Turbulence Generation in Large Eddy Simulation and Hybrid RANS/LES Modeling
,”
Phys. Fluids
,
27
(
3
), p.
035115
.10.1063/1.4916019
23.
Luke
,
E. A.
,
Tong
,
X.
, and
Chamberlain
,
R.
,
2016
, “
FlowPsi: An Ideal Gas Flow Solver-The User Guide
,” https://github.com/libm3l/FlowPsi, pp.
29
40
.
24.
Subbareddy
,
P. K.
, and
Candler
,
G. V.
,
2009
, “
A Fully Discrete, Kinetic Energy Consistent Finite Volume Scheme for Compressible Flows
,”
J. Comp. Phys.
,
228
(
5
), pp.
1347
1364
.10.1016/j.jcp.2008.10.026
25.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weath. Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
26.
Fureby
,
C.
, and
Grinstein
,
F. F.
,
1999
, “
Monotonically Integrated Large Eddy Simulation of Free Shear Flows
,”
AIAA J.
,
37
(
5
), pp.
544
556
.10.2514/2.772
27.
Germano
,
M.
,
1986
, “
Differential Filters for the Large Eddy Numerical Simulation of Turbulent Flows
,”
Phys. Fluids
,
29
(
6
), pp.
1755
1766
.10.1063/1.865649
28.
Tangermann
,
E.
, and
Klein
,
M.
,
2020
, “
Controlled Synthetic Freestream Turbulence Intensity Introduced by a Local Volume Force
,”
J. Fluids 2020
,
5
(
3
), p.
130
.10.3390/fluids5030130
29.
Shobayo
,
O. O.
, and
Walters
,
D. K.
,
2020
, “
Evaluation of a Statistically Targeted Forcing Method for Synthetic Turbulence Generation in Large-Eddy Simulations and Hybrid RANS-LES Simulations
,”
ASME
Paper No. FEDSM2020-20376.10.1115/FEDSM2020-20376
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
31.
Walters
,
D. K.
,
Bhushan
,
S.
,
Alam
,
M. F.
, and
Thompson
,
D. S.
,
2013
, “
Investigation of a Dynamic Hybrid RANS/LES Modelling Methodology for Finite Volume CFD Simulations
,”
Flow Turbul. Combust.
,
91
(
3
), pp.
643
667
.10.1007/s10494-013-9481-9
32.
Shobayo
,
O. O.
, and
Walters
,
D.
,
2018
, “
Evaluation of Performance and Code-to-Code Variation of a Dynamic Hybrid RANS/LES Model for Simulation of Backward-Facing Step Flow
,”
ASME
Paper No. FEDSM2018-83160.10.1115/FEDSM2018-83160
33.
Shobayo
,
O. O.
, and
Walters
,
D. K.
,
2019
, “
Hybrid RANS-LES Simulation of Turbulent Heat Transfer in a Channel Flow With Imposed Spanwise and Streamwise Mean Temperature Gradient
,”
ASME.
Paper No. AJKFluids2019-4920.10.1115/AJKFluids2019-4920
You do not currently have access to this content.