Abstract

Boundary layer ingestion (BLI) concepts have become a prominent topic in research and development due to their increase in fuel efficiency for aircraft. Virginia Tech has developed the StreamVane™, a secondary flow distortion generator, which can be used to efficiently test BLI and its aeromechanical effects on turbomachinery. To ensure the safety of this system, the complex vanes within StreamVanes must be further analyzed structurally and aerodynamically. In this paper, the induced strain of two common vane shapes at three different operating conditions is computationally determined. Along with these predictions, the aerodynamic damping of the vanes is calculated to predict flutter conditions at the same three operating points. To achieve this, steady computational fluid dynamics (CFD) calculations are done to acquire the aerodynamic pressure loading on the vanes. Finite element analysis (FEA) is performed to obtain the strain and modal response of the StreamVane structure. The mode shapes and steady CFD are used to initialize an unsteady CFD analysis, which acquires the aerodynamic damping results of the vanes. The testcase used for this evaluation was specifically designed to overstep the structural limits of a StreamVane, and the results provide an efficient computational method to observe flutter conditions of stationary systems.

References

1.
Hoopes
,
K. M.
,
2013
, “
A New Method for Generating Swirl Inlet Distortion for Jet Engine Research
,” M.S. thesis,
Virginia Tech
,
Blacksburg, VA
.
2.
Sheoran
,
Y.
,
Bouldin
,
B.
, and
Krishnan
,
P. M.
,
2012
, “
Compressor Performance and Operability in Swirl Distortion
,”
ASME J. Turbomach.
,
134
(
4
), p. 041008. 10.1115/1.4003657
3.
Pazur
,
W.
, and
Fottner
,
L.
,
1991
, “
The Influence of Inlet Swirl Distortions on the Performance of a Jet Propulsion Two-Stage Axial Compressor
,”
ASME J. Turbomach.
,
113
(
2
), pp.
233
240
.10.1115/1.2929091
4.
Hercock
,
R.
, and
Williams
,
D.
,
1974
, “
Distortion-Induced Engine Instability Aerodynamic Response
,” AGARD, Report No. LS72—Paper, 3.
5.
Guimarães
,
T. B.
,
2018
, “
Fluid Dynamics of Inlet Swirl Distortions for Turbofan Engine Research
,” Ph.D. thesis,
Virginia Tech
,
Blacksburg, VA
.
6.
Gillespie
,
J.
,
Frohnapfel
,
D. J.
,
Lowe
,
K. T.
, and
O'Brien
,
W. F.
,
2019
, “
Definition of Arbitrary Swirl Distortions by Solutions to the Helmholtz Equation
,”
AIAA
Paper No.
2019
1387
.10.2514/6.2019-1387
7.
Frohnapfel
,
D. J.
,
2019
, “
Methodology Development and Investigation of Turbofan Engine Response to Simultaneous Inlet Total Pressure and Swirl Distortion
,” Ph.D. thesis,
Virginia Tech
,
Blacksburg, VA
.
8.
Mack
,
E. K.
,
Gillespie
,
J.
,
Frohnapfel
,
D. J.
,
O'Brien
,
W. F.
, and
Untaroiu
,
A.
,
2018
, “
Pressure Screen–StreamVane Interaction Effects on Downstream Flow Distortion Pattern
,”
Joint Propulsion Conference
, Cincinnati, OH, p.
4401
.10.2514/6.2018-4401
9.
STRATASYS,
2017
, “
ULTEM 9085 Specifications
,” Stratasys Ltd., Eden Prairie, MN.
10.
Pham
,
K. D.
,
2018
, “
Quasi-Static Tensile and Fatigue Behavior of Extrusion Additive Manufactured ULTEM 9085
,” M.S. thesis,
Virginia Tech
, Blacksburg, VA.
11.
Pham
,
K. D.
,
O'Brien
,
W. F.
, and
Case
,
S. W.
,
2018
, “
Characterizing Static and Dynamic Mechanical Properties for Additive Manufactured ULTEM 9085 Used to Construct Flow Control Devices for Turbomachinery Applications
,”
ASME
Paper No. GT2018-75430.10.1115/GT2018-75430
12.
Gillaugh
,
D.
,
Copenhaver
,
W.
,
Janczewski
,
T.
,
Holycross
,
C.
,
Sanders
,
D.
, and
Nessler
,
C.
,
2017
, “
Aeromechanical Evaluation of an FDM Printed Thermoplastic Streamvane™
,”
53rd AIAA/SAE/ASEE Joint Propulsion Conference
, Atlanta, GA, p.
4600
.10.2514/6.2017-4600
13.
Elder
,
R.
,
Woods
,
I.
,
Patil
,
S.
,
Holmes
,
W.
,
Steed
,
R.
, and
Hutchinson
,
B.
,
2013
, June, “
Investigation of Efficient CFD Methods for the Prediction of Blade Damping
,”
ASME
Paper No. GT2013-95005.10.1115/GT2013-95005
14.
Vasanthakumar
,
P.
,
2011
, June, “
Computation of Aerodynamic Damping for Flutter Analysis of a Transonic Fan
,”
ASME
Paper No. GT2011-46597.10.1115/GT2011-46597
15.
Chen
,
X.
,
Xu
,
S.
,
Wang
,
X.
,
Ju
,
W.
,
Yang
,
S.
, and
Meng
,
J.
,
2017
, June, “
Research on Failure of Semi-Open Centrifugal Impeller Under Aerodynamic Load
,”
ASME
Paper No. GT2017-64564.10.1115/GT2017-64564
16.
Srivastava
,
R.
,
Bakhle
,
M. A.
, and
Keith
,
T. G.
, Jr.
,
2003
, “
Numerical Simulation of Aerodynamic Damping for Flutter Analysis of Turbomachinery Blade Rows
,”
J. Propul. Power
,
19
(
2
), pp.
260
267
.10.2514/2.6107
17.
Fu
,
G.
,
Untaroiu
,
A.
, and
Swanson
,
E.
,
2018
, “
Effect of Foil Geometry on the Static Performance of Thrust Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p. 082502.10.1115/1.4038693
18.
ANSYS, 2020,
ANSYS Academic Research Meshing Application
,” ANSYS Release 2020R1, Canonsburg, PA.
19.
ANSYS, 2020,
ANSYS Academic Research CFX
,” ANSYS Release 2020R1, Canonsburg, PA.
20.
ANSYS,
2020
, “
ANSYS Academic Research Help System
,” ANSYS Release 2020R1, Canonsburg, PA.
21.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
22.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
27th Aerospace Sciences Meeting
, Reno, NV, p.
366
.10.2514/6.1989-366
23.
ANSYS, 2020,
ANSYS Academic Research Mechanical
,” ANSYS Release 2020R1, Canonsburg, PA.
24.
Grimes
,
R. G.
,
Lewis
,
J. G.
, and
Simon
,
H. D.
,
1994
, “
A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems
,”
SIAM J. Matrix Anal. Appl.
,
15
(
1
), pp.
228
272
.10.1137/S0895479888151111
25.
Guimarães
,
T.
,
Todd Lowe
,
K.
, and
O'Brien
,
W. F.
,
2018
, “
Complex Flow Generation and Development in a Full-Scale Turbofan Inlet
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p. 082606.10.1115/1.4039179
26.
White
,
F. M.
,
2011
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.