Abstract

Propulsion generated by wall vibrations in the form of traveling waves was investigated. A model problem consisting of two parallel plates free to move with respect to each other was used. Vibration of one of these plates generated movement of the other plate, whose velocity was used to assess the effectiveness of such propulsion. Three types of responses were identified: a “sloshing” response for long waves, a “moving wall” response for short waves, and an “intermediate” response for in-between waves. Long and transitional waves produced propulsion of marginal interest. Short waves produced effective propulsion with the velocity of the plate increasing proportionally to the second power of the wave number and the second power of the amplitude, and approximately proportionally to the wave velocity. The vibrating wall appeared in this limit to the bulk of the fluid as a moving wall. The effectiveness of vibrations significantly increased by tilting waves. The best response for short fast waves was achieved using adjacent discrete elements spaced by about three-fourths of the wavelength. An analysis of waves of arbitrary shapes demonstrated that concentrating the vibration energy in the largest available and dominant wave number (monochromatic waves) resulted in the best system performance.

References

1.
Mannam
,
N. P. B.
, and
Krishnankutty
,
P.
,
2019
, “
Biological Propulsion Systems for Ships and Underwater Vehicles
,”
Propulsion Systems
,
A.
Serpi
, and
M.
Porru
, eds.,
IntechOpen
, London, UK, pp.
114
139
.
2.
Lauga
,
E.
,
2016
, “
Bacterial Hydrodynamics
,”
Ann. Rev. Fluid Mech.
,
48
(
1
), pp.
105
135
.10.1146/annurev-fluid-122414-034606
3.
Brennen
,
C.
, and
Winet
,
H.
,
1977
, “
Fluid Mechanics of Propulsion by Cilia and Flagella
,”
Ann. Rev. Fluid Mech.
,
9
(
1
), pp.
339
398
.10.1146/annurev.fl.09.010177.002011
4.
Blake
,
J. R.
, and
Sleigh
,
M. A.
,
1974
, “
Mechanics of Ciliary Locomotion
,”
Boil. Rev.
,
49
(
1
), pp.
85
125
.10.1111/j.1469-185X.1974.tb01299.x
5.
Taylor
,
G. I.
,
1951
, “
Analysis of the Swimming of Microscopic Organisms
,”
Proc. R. Soc. Lond. A
,
209
, pp.
447
461
.10.1098/rspa.1951.0218
6.
Katz
,
D. F.
,
1974
, “
On the Propulsion of Micro-Organisms Near Solid Boundaries
,”
J. Fluid Mech.
,
64
(
1
), pp.
33
49
.10.1017/S0022112074001984
7.
Chan
,
B.
,
Balmforth
,
N. J.
, and
Hosoi
,
A. E.
,
2005
, “
Building a Better Snail: Lubrication and Adhesive Locomotion
,”
Phys. Fluids
,
17
(
11
), p.
113101
.10.1063/1.2102927
8.
Lee
,
S.
,
Bush
,
J. W. M.
,
Hosoi
,
A. E.
, and
Lauga
,
E.
,
2008
, “
Crawling Beneath the Free Surface: Water Snail Locomotion
,”
Phys. Fluids
,
20
(
8
), p.
082106
.10.1063/1.2960720
9.
Jiao
,
L.
, and
Floryan
,
J. M.
,
2021
, “
On the Use of Transpiration Patterns for Reduction of Pressure Losses
,”
J. Fluid Mech.
,
915
, p.
A78
.10.1017/jfm.2021.143
10.
Abtahi
,
A.
, and
Floryan
,
J. M.
,
2017
, “
Natural Convection and Thermal Drift
,”
J. Fluid Mech.
,
826
, pp.
553
582
.10.1017/jfm.2017.426
11.
Floryan
,
J. M.
, and
Inasawa
,
A.
,
2021
, “
Pattern Interaction Effect
,”
Sci. Rep.
,
11
(
1
), p.
14573
.10.1038/s41598-021-93707-6
12.
Floryan
,
J. M.
,
Faisal
,
M.
, and
Panday
,
S.
,
2021
, “
On the Peristaltic Pumping
,”
Phys. Fluids
,
33
(
3
), p.
033609
.10.1063/5.0042883
13.
Cattafesta
,
L. N.
, and
Sheplak
,
M.
,
2011
, “
Actuators for Active Flow Control
,”
Ann. Rev. Fluid Mech.
,
43
(
1
), pp.
247
272
.10.1146/annurev-fluid-122109-160634
14.
Bewley
,
T. R.
,
2009
, “
A Fundamental Limit on the Balance of Power in a Transpiration-Controlled Channel Flow
,”
J. Fluid Mech.
,
632
, pp.
443
446
.10.1017/S0022112008004886
15.
Hossain
,
M. Z.
,
Floryan
,
D.
, and
Floryan
,
J. M.
,
2012
, “
Drag Reduction Due to Spatial Thermal Modulations
,”
J. Fluid Mech.
,
713
, pp.
398
419
.10.1017/jfm.2012.465
16.
Hossain
,
M. Z.
, and
Floryan
,
J. M.
,
2020
, “
On the Role of Surface Grooves in the Reduction of Pressure Losses in Heated Channels
,”
Phys. Fluids
,
32
(
8
), p.
083610
.10.1063/5.0018416
17.
Kato
,
T.
,
Fukunishi
,
Y.
, and
Kobayashi
,
R.
,
1997
, “
Artificial Control of the Three-Dimensionalization Process of T-S Waves in Boundary-Layer Transition
,”
JSME Int. J.
,
40
(
4
), pp.
536
541
.10.1299/jsmeb.40.536
18.
Inasawa
,
A.
,
Ninomiya
,
C.
, and
Asai
,
M.
,
2013
, “
Suppression of Tonal Trailing-Edge Noise From an Airfoil Using a Plasma Actuator
,”
AIAA J.
,
51
(
7
), pp.
1695
1702
.10.2514/1.J052203
19.
Fukunishi
,
Y.
, and
Ebina
,
I.
,
2001
, “
Active Control of Boundary-Layer Transition Using a Thin Actuator
,”
JSME Int. J.
,
44
(
1
), pp.
24
29
.10.1299/jsmeb.44.24
20.
Floryan
,
J. M.
, and
Zandi
,
S.
,
2019
, “
Reduction of Pressure Losses and Increase of Mixing in Laminar Flows Through Channels With Long-Wavelength Vibrations
,”
J. Fluid Mech.
,
864
, pp.
670
707
.10.1017/jfm.2019.21
21.
Fung
,
Y. C.
, and
Yih
,
C. S.
,
1968
, “
Peristaltic Transport
,”
ASME J. Appl. Mech.
,
35
(
4
), pp.
669
675
.10.1115/1.3601290
22.
Shapiro
,
A. H.
,
Jaffrin
,
M. Y.
, and
Weinberg
,
S.
,
1969
, “
Peristaltic Pumping With Long Wavelengths at Low Reynolds Numbers
,”
J. Fluid Mech.
,
37
(
4
), pp.
799
825
.10.1017/S0022112069000899
23.
Jaffrin
,
M. Y.
, and
Shapiro
,
A. H.
,
1971
, “
Peristaltic Pumping
,”
Ann. Rev. Fluid Mech.
,
3
(
1
), pp.
13
37
.10.1146/annurev.fl.03.010171.000305
24.
Ali
,
N.
,
Ullah
,
K.
, and
Rasool
,
H.
,
2020
, “
Bifurcation Analysis for a Two-Dimensional Peristaltic Driven Flow of Power-Law Fluid in Asymmetric Channel
,”
Phys. Fluids
,
32
(
7
), p.
073104
.10.1063/5.0011465
25.
Floryan
,
J. M.
, and
Rasmussen
,
H.
,
1989
, “
Numerical Analysis of Viscous Flows With Free Surfaces
,”
Appl. Mech. Rev.
,
42
(
12
), pp.
323
341
.10.1115/1.3152416
26.
Cabal
,
A.
,
Szumbarski
,
J.
, and
Floryan
,
J. M.
,
2001
, “
Numerical Simulation of Flows Over Corrugated Walls
,”
Comp. Fluids
,
30
(
6
), pp.
753
776
.10.1016/S0045-7930(00)00028-1
27.
Husain
,
S. Z.
, and
Floryan
,
J. M.
,
2010
, “
Spectrally-Accurate Algorithm for Moving Boundary Problems for the Navier-Stokes Equations
,”
J. Comp. Phys.
,
229
(
6
), pp.
2287
2313
.10.1016/j.jcp.2009.11.035
28.
Husain
,
S. Z.
,
Szumbarski
,
J.
, and
Floryan
,
J. M.
,
2009
, “
Over-Constrained Formulation of the Immersed Boundary Condition Method
,”
Comp. Meth. Appl. Mech. Eng.
,
199
(
1–4
), pp.
94
112
.10.1016/j.cma.2009.09.022
29.
Gropper
,
D.
,
Wang
,
L.
, and
Harvey
,
T. J.
,
2016
, “
Hydrodynamic Lubrication of Textured Surfaces: A Review of Modelling Techniques and Key Findings
,”
Tribol. Int.
,
94
, pp.
509
529
.10.1016/j.triboint.2015.10.009
You do not currently have access to this content.