Abstract

The number of marine scrubbers installed in industry has been on the rise over the past decade and is expected to continue in the coming years. Therefore, it is essential to ensure that the design of the scrubbers enables as an efficient operation as possible. In this study, an optimization of the exhaust cover inside an in-line scrubber was carried out. The optimization was done by combining a computational fluid dynamics model working on a simplified geometry with the method of feasible directions in order to reduce the pressure loss caused by the exhaust cover. The design is constrained in both height and width of the points making up the exhaust cover to ensure proper drainage of water and to avoid invalid designs. It was found that the optimized design reduced the pressure loss by 42% compared to the initial design. Furthermore, the scalability of the original design was investigated with the same height constraint enforced on the design variables. The result of the scalability analysis showed that the radius of the exhaust cover for the optimal designs scales linearly with the diameter of the scrubber, while the pressure loss was found to increase quadratically as the diameter of the scrubber increases.

References

1.
IMO
,
2008
, “
Amendments to the Annex of the Protocol of 1997 to Amend the International Convention for the Prevention of Pollution From Ships, 1973, as Modified by the Protocol of 1978 Relating Thereto, 10
,”
Resolution MEPC
,
176
(
58
), pp. 1–45
2.
Schifftner
,
K. C.
, and
Hesketh
,
H. E.
,
1996
,
Wet Scrubbers
,
CRC Press
, Boca Raton, FL.
3.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
, 2nd ed.,
Wiley
, New York.
4.
Marocco
,
L.
, and
Inzoli
,
F.
,
2009
, “
Multiphase Euler-Lagrange Cfd Simulation Applied to Wet Flue Gas Desulphurisation Technology
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
185
194
.10.1016/j.ijmultiphaseflow.2008.09.005
5.
Tseng
,
C.-C.
, and
Li
,
C.-J.
,
2018
, “
Eulerian-Eulerian Numerical Simulation for a Flue Gas Desulfurization Tower With Perforated Sieve Trays
,”
Int. J. Heat Mass Transfer
,
116
, pp.
329
345
.10.1016/j.ijheatmasstransfer.2017.09.024
6.
Selvakumar
,
K.
, and
Kim
,
M. Y.
,
2016
, “
A Numerical Study on the Fluid Flow and Thermal Characteristics Inside the Scrubber With Water Injection
,”
J. Mech. Sci. Technol.
,
30
(
2
), pp.
915
923
.10.1007/s12206-016-0145-2
7.
Haller
,
H.
,
Muschelknautz
,
E.
, and
Schultz
,
T.
,
1989
, “
Venturi Scrubber Calculation and Optimization
,”
Chem. Eng. Technol.
,
12
(
1
), pp.
188
195
.10.1002/ceat.270120125
8.
Viswanathan
,
S.
,
Ananthanarayana
,
N. V.
, and
Azzopardi
,
B. J.
,
2008
, “
Venturi Scrubber Modelling and Optimization Venturi Scrubber Model
,”
Can. J. Chem. Eng.
,
83
(
2
), pp.
194
203
.10.1002/cjce.5450830206
9.
Yang
,
D.
,
Zhong
,
W.
,
Chen
,
X.
,
Zhan
,
J.
, and
Wang
,
G.
,
2019
, “
Structure Optimization of Vessel Seawater Desulphurization Scrubber Based on CFD and SVM-GA Methods
,”
Can. J. Chem. Eng.
,
97
(
11
), pp.
2899
2909
.10.1002/cjce.23498
10.
Koch-Glitsch
,
2020
, “
Metal Random Packing
,”
Koch-GLITSCH
, Wichita, KS.
11.
Sherwood
,
T. K.
,
Shipley
,
G.
, and
Holloway
,
F. A. L.
,
1938
, “
Flooding Velocities in Packed Columns
,”
Ind. Eng. Chem.
,
30
(
7
), pp.
765
769
.10.1021/ie50343a008
12.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics, An: The Finite Volume Method
,
Pearson Education Limited
, Harlow, UK.
13.
Menter
,
F. R.
, and
Esch
,
T.
,
2001
, “
Elements of Industrial Heat Transfer Prediction
,”
16th Brazilian Congress of Mechanical Engineering (COBEM)
, Uberlândia, Nov. 26–30, pp.
117
127
.
14.
ANSYS
,
2013
,
Ansys Fluent User's Guide. Tech. rep
,
ANSYS, Inc
, Canonsburg, PA.
15.
Menter
,
F.
,
Ferreira
,
J. C.
, and
Konno
,
T. E. B.
,
2003
, “
The Sst Turbulence Model With Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines
,”
Proceedings of the International Gas Turbine Congress
, Tokyo, Japan, Nov. 2–7, Paper No. IGTC2003-TS-059.
16.
Foundation
,
T. O.
,
2021
, “
Openfoam v9 User Guide
,” The OpenFOAM Foundation, London, Report No. 9.
17.
Juretic
,
D. F.
,
2015
, “
Cfmesh User Guide
,”
Creative Fields
, Zagreb, Report No. 1.1.
18.
Andersson
,
B.
,
Andersson
,
R.
,
Håkansson
,
L.
,
Mortensen
,
M.
,
Sudiyo
,
R.
, and
van Wachem
,
B.
,
2011
,
Computational Fluid Dynamics for Engineers
,
Cambridge University Press
, Cambridge, UK.
19.
Mahaffy
,
J.
,
Chung
,
B.
,
Dubois
,
F.
,
Ducros
,
F.
,
Graffard
,
E.
,
Heitsch
,
M.
,
Henriksson
,
M.
,
NRG)
,
E. K.
,
Moretti
,
F.
,
Morii
,
T.
,
Mühlbauer
,
P.
,
Rohde
,
U.
,
Scheuerer
,
M.
,
Smith
,
B. L.
,
Song
,
C.
,
Watanabe
,
T.
, and
Zigh
,
G.
,
2015
, “
Best Practice Guidelines for the Use of Cfd in Nuclear Reactorsafety Applications – Revision
,” OECD-NEA, Paris, France, Report No. NEA/CSNI/R(2014)11.
20.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
21.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
22.
Vanderplaats
,
G. N.
,
1973
, “
A Fortran Program for Constrained Function Minimization
,” NASA, Moffett Field, Report No. TM X-62282.
23.
Adams
,
B.
,
Bauman
,
L.
,
Bohnhoff
,
W.
,
Dalbey
,
K.
,
Ebeida
,
M.
,
Eddy
,
J.
,
Eldred
,
M.
,
Hough
,
P.
,
Hu
,
K.
,
Jakeman
,
J.
,
Stephens
,
J.
,
Swiler
,
L.
,
Vigil
,
D.
, and
Wildey
,
T.
,
2014
, “
Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0 User's Manual
,” Sandia National Laboratories, Albuquerque, NM, Report.
24.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), p.
620
.10.1063/1.168744
25.
Arora
,
J. S.
,
2012
,
Introduction to Optimum Design
, 3rd ed,
Elsevier
, London.
You do not currently have access to this content.